Implications of Chaos Theory in Management Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Management © Adrienne Watt
Project Management © Adrienne Watt This work is licensed under a Creative Commons-ShareAlike 4.0 International License Original source: The Saylor Foundation http://open.bccampus.ca/find-open-textbooks/?uuid=8678fbae-6724-454c-a796-3c666 7d826be&contributor=&keyword=&subject= Contents Introduction ...................................................................................................................1 Preface ............................................................................................................................2 About the Book ..............................................................................................................3 Chapter 1 Project Management: Past and Present ....................................................5 1.1 Careers Using Project Management Skills ......................................................................5 1.2 Business Owners ...............................................................................................................5 Example: Restaurant Owner/Manager ..........................................................................6 1.2.1 Outsourcing Services ..............................................................................................7 Example: Construction Managers ..........................................................................8 1.3 Creative Services ................................................................................................................9 Example: Graphic Artists ...............................................................................................10 -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Alwyn C. Scott
the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles The Thermodynamic Machinery of Life By M. Kurzynski The Emerging Physics of Consciousness Edited by J. A. Tuszynski Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics Edited by J. Evans, A.S. Thorndike Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Asymmetry: The Foundation of Information By S.J. Muller Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-to-Classical Transition By M. Schlosshauer For a complete list of titles in The Frontiers Collection, see back of book Alwyn C. -
A Fairly Complete History and Tour of Aynho Village – Updated January 2017 Aynho Is a Two-Part Name
A Fairly Complete History and Tour of Aynho Village – updated January 2017 Aynho is a two-part name - ‘Ayn’ is either a corruption of a Saxon personal name, or more likely the Saxon word for a spring or stream. The ‘Hoh’ is a Saxon word for a promontory/projecting ridge of land standing on a plain as Aynho does. The earliest mention (in the Domesday Book) of an owner of the manor of Aynho is Asgar - a Danish thane (knight). He was standard bearer for Edward the Confessor who reigned from 1042 to 1066. (Edward was born at Islip about fifteen miles south east of Aynho, so he probably knew Asgar). The entry showed 3¼ hides (about 400 acres altogether), land for 8 ploughs, a mill and 20 acres of meadow. Why was Aynho so relatively important in the mid-ten hundreds? Probably because of its location high up overlooking the whole Cherwell valley. There were very few significant houses in existence within a radius of twenty miles at that time, and it is believed that Aynho had a substantial wooden Saxon manor house then. For example Oxford Castle was not built until 1073, Banbury Castle 1135, Broughton Castle 1300, Rousham House 1635 and Upton House 1695. The first proper Oxford College, University College, wasn’t founded until1249. Apart from Aynho north of Oxford only Sulgrave Manor is recorded as having an Anglo-Saxon Manor House around the late 9th century. William the Conqueror gave the village to one of his barons, Geoffrey de Mandeville, for helping him win the Battle of Hastings in 1066. -
Management Science
MANAGEMENT SCIENCE CSE DEPARTMENT 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD Iv Year B.Tech. CSE- II Sem MANAGEMENT SCIENCE Objectives: This course is intended to familiarise the students with the framework for the managers and leaders availbale for understanding and making decisions realting to issues related organiational structure, production operations, marketing, Human resource Management, product management and strategy. UNIT - I: Introduction to Management and Organisation: Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's Theory X and Theory Y - Hertzberg Two Factor Theory of Motivation - Leadership Styles, Social responsibilities of Management, Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation, Types and Evaluation of mechanistic and organic structures of organisation and suitability. UNIT - II: Operations and Marketing Management: Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - Business Process Reengineering(BPR) - Statistical Quality Control: control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, TQM, Six Sigma, Deming's contribution to quality, Objectives of Inventory control, EOQ, ABC Analysis, -
Complex Numbers and Colors
Complex Numbers and Colors For the sixth year, “Complex Beauties” provides you with a look into the wonderful world of complex functions and the life and work of mathematicians who contributed to our understanding of this field. As always, we intend to reach a diverse audience: While most explanations require some mathemati- cal background on the part of the reader, we hope non-mathematicians will find our “phase portraits” exciting and will catch a glimpse of the richness and beauty of complex functions. We would particularly like to thank our guest authors: Jonathan Borwein and Armin Straub wrote on random walks and corresponding moment functions and Jorn¨ Steuding contributed two articles, one on polygamma functions and the second on almost periodic functions. The suggestion to present a Belyi function and the possibility for the numerical calculations came from Donald Marshall; the November title page would not have been possible without Hrothgar’s numerical solution of the Bla- sius equation. The construction of the phase portraits is based on the interpretation of complex numbers z as points in the Gaussian plane. The horizontal coordinate x of the point representing z is called the real part of z (Re z) and the vertical coordinate y of the point representing z is called the imaginary part of z (Im z); we write z = x + iy. Alternatively, the point representing z can also be given by its distance from the origin (jzj, the modulus of z) and an angle (arg z, the argument of z). The phase portrait of a complex function f (appearing in the picture on the left) arises when all points z of the domain of f are colored according to the argument (or “phase”) of the value w = f (z). -
Abstract and Background Project Management Has Been Practiced Since Early Civili- Zation
Business Theory Project Management: Science or a Craft? Abdulrazak Abyad Correspondence: A. Abyad, MD, MPH, MBA, DBA, AGSF , AFCHSE CEO, Abyad Medical Center, Lebanon. Chairman, Middle-East Academy for Medicine of Aging http://www.meama.com, President, Middle East Association on Age & Alzheimer’s http://www.me-jaa.com/meaaa.htm Coordinator, Middle-East Primary Care Research Network http://www.mejfm.com/mepcrn.htm Coordinator, Middle-East Network on Aging http://www.me-jaa.com/menar-index.htm Email: [email protected] Development of Project Management thinking Abstract and background Project management has been practiced since early civili- zation. Until 1900 civil engineering projects were generally managed by creative architects, engineers, and master build- Projects in one form or another have been undertaken for ers themselves. It was in the 1950s that organizations started millennia, but it was only in the latter part of the 20th cen- to systematically apply project management tools and tech- tury people started talking about ‘project management’. niques to complex engineering projects (Kwak, 2005). How- Project Management (PM) is becoming increasingly im- ever, project management is a relatively new and dynamic portant in almost any kind of organization today (Kloppen- research area. The literature on this field is growing fast and borg & Opfer, 2002). Once thought applicable only to large receiving wider contribution of other research fields, such as scale projects in construction, R&D or the defence field, psychology, pedagogy, management, engineering, simulation, PM has branched out to almost all industries and is used sociology, politics, linguistics. These developments make the as an essential strategic element for managing and affect- field multi-faced and contradictory in many aspects. -
Topic 6: Projected Dynamical Systems
Topic 6: Projected Dynamical Systems Professor Anna Nagurney John F. Smith Memorial Professor and Director – Virtual Center for Supernetworks Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003 SCH-MGMT 825 Management Science Seminar Variational Inequalities, Networks, and Game Theory Spring 2014 c Anna Nagurney 2014 Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems A plethora of equilibrium problems, including network equilibrium problems, can be uniformly formulated and studied as finite-dimensional variational inequality problems, as we have seen in the preceding lectures. Indeed, it was precisely the traffic network equilibrium problem, as stated by Smith (1979), and identified by Dafermos (1980) to be a variational inequality problem, that gave birth to the ensuing research activity in variational inequality theory and applications in transportation science, regional science, operations research/management science, and, more recently, in economics. Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems Usually, using this methodology, one first formulates the governing equilibrium conditions as a variational inequality problem. Qualitative properties of existence and uniqueness of solutions to a variational inequality problem can then be studied using the standard theory or by exploiting problem structure. Finally, a variety of algorithms for the computation of solutions to finite-dimensional variational inequality problems are now available (see, e.g., Nagurney (1999, 2006)). Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems Finite-dimensional variational inequality theory by itself, however, provides no framework for the study of the dynamics of competitive systems. Rather, it captures the system at its equilibrium state and, hence, the focus of this tool is static in nature. -
Management Science (MSC) 1
Management Science (MSC) 1 Management Science (MSC) MSC 287 - BUSINESS STATISTICS I Semester Hours: 3 Introduction to probability & business statistics. Covers: tabular, graphical, and numerical methods for descriptive statistics; measures of central tendency, dispersion, and association; probability distributions; sampling and sampling distributions; and confidence intervals. Uses spreadsheets to solve problems. Prerequisite: Any 100 level MA course. MSC 288 - BUSINESS STATISTICS II Semester Hours: 3 Inferential statistics for business decisions. Topics include: review of sampling distributions and estimation; inferences about means, proportions, and variances with one and two populations; good of fit tests; analysis of variance and experimental design; simple linear regression; multiple linear regression; non parametric methods. Prerequisite: MSC 287. MSC 385 - OPERATIONS ANALYSIS Semester Hours: 3 Survey of the firm's production function and quantitative tools for solving production problems, quality management, learning curves, assembly and waiting lines, linear programming, inventory, and other selected topics (e.g., scheduling, location, supply chain management). Uses the SAP software. Prerequisite: MSC 288. MSC 410 - TRANSPORTATION & LOGISTICS Semester Hours: 3 An analysis of transportation and logistical services to include customer service, distribution operations, purchasing, order processing, facility design and operations, carrier selection, transportation costing, and negotiation. Prerequisite: MKT 301. MSC 411 - SUPPLY CHAIN MANAGEMENT Semester Hours: 3 Supply chain management focuses on networks of companies that deliver value to customers. The course focuses on understanding integrated supply chains and examines how product development and design, demand, marketing, globalization, customer locations, distribution networks, suppliers and ERP systems impact a company's supply chain design. Prerequisite: MSC 287. MSC 412 - ARMY SENIOR LOGISTICIAN-ADV Semester Hours: 3 The Senior Logistician Advanced Course (SLAC) is part of the U.S. -
Management Science 1
Management Science 1 MANAGEMENT SCIENCE Department Code: MAS Introduction Management Science uses the ideas and methods of science, mathematics, statistics, and computing, which collectively are often referred to as Business Analytics, to help managers make better business decisions. Management science techniques have been applied in a wide variety of areas including financial modeling, marketing research, organizational theory, transportation and logistics, health care, environmental protection, and manufacturing. Almost any decision can benefit from the methods of management science/analytics. Educational Objectives The Department of Management Science offers a major area of specialization in Business Analytics as well as a minor in Business Analytics. The Business Analytics curriculum is designed to give Miami Herbert Business School students the necessary educational background and experience to allow them to work as successful business analytics professionals. Students pursuing the Bachelor of Business Administration (BBA) degree with a major area of specialization in Business Analytics are trained to combine quantitative, statistical, and computational tools and techniques to help companies understand, predict, and act on large amounts of data, improving decision-making in increasingly complex and interconnected business environments. For students pursuing the Bachelor of Science in Business Administration (BSBA) degree program, the major in Business Analytics requires a solid background in the sciences and mathematics. Additionally, students are required to take sequences of courses in optimization, decision science, and data analytics. A number of the courses in the Business Analytics curriculum require projects, in which the student evaluates a real-world system or process. As the system is studied and modeled, the student applies management science methods to find ways to improve the process. -
Birds and Frogs Equation
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Quadratic Diophantine Multiscale Principles of Equations Finite Harmonic of the American Mathematical Society T. Andreescu, University of Texas at Element Analysis February 2009 Volume 56, Number 2 Dallas, Richardson, TX, USA; D. Andrica, Methods A. Deitmar, University Cluj-Napoca, Romania Theory and University of This text treats the classical theory of Applications Tübingen, quadratic diophantine equations and Germany; guides readers through the last two Y. Efendiev, Texas S. Echterhoff, decades of computational techniques A & M University, University of and progress in the area. The presenta- College Station, Texas, USA; T. Y. Hou, Münster, Germany California Institute of Technology, tion features two basic methods to This gently-paced book includes a full Pasadena, CA, USA investigate and motivate the study of proof of Pontryagin Duality and the quadratic diophantine equations: the This text on the main concepts and Plancherel Theorem. The authors theories of continued fractions and recent advances in multiscale finite emphasize Banach algebras as the quadratic fields. It also discusses Pell’s element methods is written for a broad cleanest way to get many fundamental Birds and Frogs equation. audience. Each chapter contains a results in harmonic analysis. simple introduction, a description of page 212 2009. Approx. 250 p. 20 illus. (Springer proposed methods, and numerical 2009. Approx. 345 p. (Universitext) Monographs in Mathematics) Softcover examples of those methods. Softcover ISBN 978-0-387-35156-8 ISBN 978-0-387-85468-7 $49.95 approx. $59.95 2009. X, 234 p. (Surveys and Tutorials in The Strong Free Will the Applied Mathematical Sciences) Solving Softcover Theorem Introduction to Siegel the Pell Modular Forms and ISBN: 978-0-387-09495-3 $44.95 Equation page 226 Dirichlet Series Intro- M.