Mechanisms of Assortative Mating in Speciation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Robust Test for Assortative Mating
European Journal of Human Genetics (2000) 8, 119–124 © 2000 Macmillan Publishers Ltd All rights reserved 1018–4813/00 $15.00 y www.nature.com/ejhg ARTICLE A robust test for assortative mating Emmanuelle G´enin1, Carole Ober2, Lowell Weitkamp3 and Glenys Thomson1 1Department of Integrative Biology, University of California, Berkeley, CA, USA; 2Department of Human Genetics, University of Chicago, Chicago, IL, USA; 3Department of Psychiatry and Division of Genetics, University of Rochester Medical Center, Rochester, NY, USA Testing for random mating in human populations is difficult due to confounding factors such as ethnic preference and population stratification. With HLA, the high level of polymorphism is an additional problem since it is rare for couples to share the same haplotype. Focus on an ethnically homogeneous population, where levels of polymorphism at HLA loci are more limited, may provide the best situation in which to detect non-random mating. However, such populations are often genetic isolates where there may be inbreeding to an extent that is difficult to quantify and account for. We have developed a test for random mating at a multiallelic locus that is robust to stratification and inbreeding. This test relies on the availability of genotypic information from the parents of both spouses. The focus of the test is on families where there is allele sharing between the parents of both spouses, so that potential spouses could share an allele. Denoting the shared allele at the locus of interest by A, then under the assumption of random mating, heterozygous parents AX should transmit allele A equally as frequently as allele X to their offspring. -
Avian Vision and the Evolution of Egg Color Mimicry in The
evo_65_7_cover 6/22/11 7:16 PM Page 1 Volume 65, Number 7, July 2011 VOLUME 65, NUMBER 7, JULY 2011 EVOLUTION VOLUME 65, NUMBER 7, PAGES PERSPECTIVE INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION Convergence, Adaptation, and Constraint Jonathan B. Losos 1827–1840 ORIGINAL ARTICLES 1827 Neutral Biodiversity Theory can Explain the Imbalance of Phylogenetic Trees but not the Tempo –2132 of their Diversification T. Jonathan Davies, Andrew P. Allen, Luís Borda-de-A´gua, Jim Regetz, and Carlos J. Melián 1841–1850 The Impact of Gene-Tree/Species-Tree Discordance on Diversification-Rate Estimation Frank T. Burbrink and R. Alexander Pyron 1851–1861 Dealing with Incomplete Taxon Sampling and Diversification of a Large Clade of Mushroom-Forming Fungi Martin Ryberg and Patrick Brandon Matheny 1862–1878 EVOLUTION Diversity and Demography in Beringia: Multilocus Tests of Paleodistribution Models Reveal the Complex History of Arctic Ground Squirrels Kurt E. Galbreath, Joseph A. Cook, Aren A. Eddingsaas, and Eric G. DeChaine 1879–1896 The Genetic Architecture of Adaptation Under Migration-Selection Balance Sam Yeaman and Michael C. Whitlock 1897–1911 The Influence of an Innovative Locomotor Strategy on the Phenotypic Diversification of Triggerfish (Family: Balistidae) Alex Dornburg, Brian Sidlauskas, Francesco Santini, Laurie Sorenson, Thomas J. Near, and Michael E. Alfaro 1912–1926 The Tempo and Mode of Evolution: Body Sizes of Island Mammals Pasquale Raia and Shai Meiri 1927–1934 Mammals Evolve Faster on Smaller Islands Virginie Millien 1935–1944 Evolutionary Advantage of Small Populations on Complex Fitness Landscapes Kavita Jain, Joachim Krug, and Su-Chan Park 1945–1955 Interspecific X-Chromosome and Mitochondrial DNA Introgression in the Iberian Hare: Selection or Allele Surfing? July 2011 José Melo-Ferreira, Paulo C. -
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja To cite this version: Roger Butlin, Carole Smadja. Coupling, Reinforcement, and Speciation. American Naturalist, Uni- versity of Chicago Press, 2018, 191 (2), pp.155-172. 10.1086/695136. hal-01945350 HAL Id: hal-01945350 https://hal.archives-ouvertes.fr/hal-01945350 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License vol. 191, no. 2 the american naturalist february 2018 Synthesis Coupling, Reinforcement, and Speciation Roger K. Butlin1,2,* and Carole M. Smadja1,3 1. Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa; 2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom; and Department of Marine Sciences, University of Gothenburg, Tjärnö SE-45296 Strömstad, Sweden; 3. Institut des Sciences de l’Evolution, Unité Mixte de Recherche 5554 (Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement–École pratique des hautes études), Université de Montpellier, 34095 Montpellier, France Submitted March 15, 2017; Accepted August 28, 2017; Electronically published December 15, 2017 abstract: During the process of speciation, populations may di- Introduction verge for traits and at their underlying loci that contribute barriers Understanding how reproductive isolation evolves is key fl to gene ow. -
Reinforcement and the Genetics of Hybrid Incompatibilities
Genetics: Published Articles Ahead of Print, published on March 17, 2006 as 10.1534/genetics.105.048199 Reinforcement and the genetics of hybrid incompatibilities Alan R. Lemmon1 and Mark Kirkpatrick Affiliation: Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 1 Running head: Reinforcement and hybrid incompatibility Keywords: hybridization, speciation, reinforcement, incompatibility, sex linkage, incompatibility sieve 1Correspondence: Alan R. Lemmon Section of Integrative Biology The University of Texas at Austin 1 University Station #C0930 Austin, TX 78712 USA Email: [email protected] Tel: 512-471-3760; Fax: 512-471-3878 2 ABSTRACT Recent empirical studies suggest that genes involved in speciation are often sex-linked. We derive a general analytic model of reinforcement to study the effects of sex linkage on reinforcement under three forms of selection against hybrids: one-locus, two-locus, and ecological incompatibilities. We show that the pattern of sex linkage can have a large effect on the amount of reinforcement due to hybrid incompatibility. Sex linkage of genes involved in postzygotic isolation generally increases the strength of reinforcement, but only if genes involved in prezygotic isolation are also sex-linked. We use exact simulations to test the accuracy of the approximation and find that qualitative predictions made assuming weak selection can hold when selection is strong. 3 Speciation is the evolution of prezygotic or postzygotic isolation. Postzygotic isolation is thought to evolve through the accumulation of genetic incompatibilities during allopatric separation. Prezygotic isolation can evolve through reinforcement, which is the evolution of increased prezygotic isolation as a result of selection against hybrids (Dobzhansky 1940; Blair 1955; Howard 1993). -
Sex Differences in the Recombination Landscape*
vol. 195, no. 2 the american naturalist february 2020 Symposium Sex Differences in the Recombination Landscape* Jason M. Sardell† and Mark Kirkpatrick Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712 Submitted May 12, 2018; Accepted April 26, 2019; Electronically published December 9, 2019 Online enhancement: appendix. abstract: Sex differences in overall recombination rates are well Nearly all attention to this question has focused on over- known, but little theoretical or empirical attention has been given all map lengths. Achiasmy, in which recombination is lost to how and why sexes differ in their recombination landscapes: the in one sex, has evolved about 30 times, and the loss always patterns of recombination along chromosomes. In the first scientific occurs in the heterogametic sex (Haldane 1922; Huxley review of this phenomenon, we find that recombination is biased to- 1928; Burt et al. 1991). A much more common but less un- ward telomeres in males and more uniformly distributed in females in derstood situation is heterochiasmy, in which both sexes re- most vertebrates and many other eukaryotes. Notable exceptions to combine but at different rates. In these cases, sex differences this pattern exist, however. Fine-scale recombination patterns also fre- quently differ between males and females. The molecular mechanisms in map lengths are not correlated with which sex is hetero- responsible for sex differences remain unclear, but chromatin land- gametic (Burt et al. 1991; Lenormand 2003; Brandvain and scapes play a role. Why these sex differences evolve also is unclear. Hy- Coop 2012), although overall recombination tends to be potheses suggest that they may result from sexually antagonistic selec- higher in females across animals and outcrossing plants (re- tion acting on coding genes and their regulatory elements, meiotic viewed in Lenormand and Dutheil 2005; Brandvain and drive in females, selection during the haploid phase of the life cycle, Coop 2012). -
Ecological Speciation in Phytophagous Insects
DOI: 10.1111/j.1570-7458.2009.00916.x MINI REVIEW Ecological speciation in phytophagous insects Kei W. Matsubayashi1, Issei Ohshima2 &PatrikNosil3,4* 1Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan, 2Department of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan, 3Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA, and 4Wissenschaftskolleg, Institute for Advanced Study, Berlin, 14193, Germany Accepted: 7 August 2009 Key words: host adaptation, genetics of speciation, natural selection, reproductive isolation, herbivo- rous insects Abstract Divergent natural selection has been shown to promote speciation in a wide range of taxa. For exam- ple, adaptation to different ecological environments, via divergent selection, can result in the evolution of reproductive incompatibility between populations. Phytophagous insects have been at the forefront of these investigations of ‘ecological speciation’ and it is clear that adaptation to differ- ent host plants can promote insect speciation. However, much remains unknown. For example, there is abundant variability in the extent to which divergent selection promotes speciation, the sources of divergent selection, the types of reproductive barriers involved, and the genetic basis of divergent adaptation. We review these factors here. Several findings emerge, including the observation that although numerous different sources of divergent selection and reproductive isolation can be involved in insect speciation, their order of evolution and relative importance are poorly understood. Another finding is that the genetic basis of host preference and performance can involve loci of major effect and opposing dominance, factors which might facilitate speciation in the face of gene flow. In addition, we raise a number of other recent issues relating to phytophagous insect speciation, such as alternatives to ecological speciation, the geography of speciation, and the molecular signatures of spe- ciation. -
The Evolution of Sexual Imprinting Through Reinforcement
Assortative mating by an obliquely transmitted local cultural trait promotes divergence Justin Yeh University of North Carolina at Chapel Hill Do learned birdsong dialects lead to speciation? • Molecular similarity might correlate with dialect similarity (Baker 1975; Baker & Thompson 1982; Zink & Barrowclough 1984) • Genetic cline overlap with cultural cline, but at lower steepness, and the birdsong does not predict genotype (Kenyon et al. 2016) • Bird lineage with song learning has more species than that without (Lachlan & Servedio 2004) Justin Yeh 2 correlation ⇏ causation no correlation ⇏ no causation Justin Yeh 3 Oblique learning: from unrelated individual of the previous generation • Juvenile songbirds learn from adult neighbors • Obliquely transmitted traits are immune to sexual selection (Yeh & Servedio 2015) • If any juvenile can learn from any adult, there should not be correlation between gene and culture Justin Yeh 4 Spatial structure creates gene- culture association • Learning is spatially restricted • Cultural traits can be locally adapted – High-freq vocal signals in cities (Luther & Derryberry 2012) – Tonal languages in humid environment (Everett et al. 2014) Justin Yeh 5 Hypothesis Local genes & Local song & local local oblique reproduction learning Justin Yeh 6 Hypothesis Local genes & Local song & local local oblique reproduction learning Gene-culture association Justin Yeh 7 Hypothesis Local genes & Local song & local local oblique reproduction learning Divergent selection Gene-culture & sexual selection association -
Ecological Speciation with Gene Flow in Neodiprion Pinetum and N. Lecontei
University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2020 FROM GENES TO SPECIES: ECOLOGICAL SPECIATION WITH GENE FLOW IN NEODIPRION PINETUM AND N. LECONTEI Emily E. Bendall University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0003-2524-088X Digital Object Identifier: https://doi.org/10.13023/etd.2020.221 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bendall, Emily E., "FROM GENES TO SPECIES: ECOLOGICAL SPECIATION WITH GENE FLOW IN NEODIPRION PINETUM AND N. LECONTEI" (2020). Theses and Dissertations--Biology. 62. https://uknowledge.uky.edu/biology_etds/62 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Rebecca Jo Safran
Safran – CV, Page 1 September 2016 C U R R I C U L U M V I T A E Rebecca Jo Safran Associate Professor Department of Ecology and Evolutionary Biology University of Colorado Boulder, Colorado 80309 E-MAIL [email protected] TELEPHONE 303.734.1495 MOBILE: 303.249.8089 Lab website: [email protected] EDUCATION Ph.D. Cornell University Ecology and Evolutionary Biology January Minor Degree in Biometry 2005 (MA equivalent) M.S. Humboldt State University Ecology May 1997 B.S. University of Michigan School of Natural Resources and December the Environment 1991 RESEARCH INTERESTS Integrative evolutionary ecology: phenotype evolution, gene X environment influences on phenotype, evolution by sexual and natural selection, role of adaptation in the evolution of reproductive isolation, behavioral reproductive isolation, patterns of genomic divergence in speciation, genetic and hormonal control of behavior and morphology, relationships between scales of analysis: individuals to populations APPOINTMENTS Associate Professor, Department of Ecology and Evolutionary Biology. University of Colorado, Boulder, Colorado. August 2014 – present. Assistant Professor, Department of Ecology and Evolutionary Biology. University of Colorado, Boulder, Colorado. January 2008 – August 2014. Postdoctoral Fellow, Council on Science and Technology and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey. September 2005 – December 2007 AWARDS & HONORS 2016 Elected Fellow, American Ornithological Society 2016 Invited Participant, Presidential Debate, Conference of the American Society of Naturalists, Asilomar, CA 2015 Elected co-chair (2017)/chair (2019): Gordon Conference on Speciation 2015 Faculty Sustainability Award, University of Colorado 2015 Invited Speaker: Gordon Conference on Speciation, Ventura California 2015 Storer Lecture: College of Biological Sciences, University of California, Davis Safran – CV, Page 2 September 2016 2014 Invited Speaker: National Evolutionary Synthesis Center, Evolutionary Synthesis, Past and Future. -
Assortative Mating and Sexual Dimorphism in the Common Tern
Wilson Bull., 98(l), 1986, pp. 93-100 ASSORTATIVE MATING AND SEXUAL DIMORPHISM IN THE COMMON TERN MALCOLM C. COULTER ’ ABSTRACT.-Although male and female Common Terns (Sterna hirundo)are almost iden- tical in plumage and in most external body measurements, males have longer, deeper, and wider bills than do females. Two patterns in the size relationships between mates are dem- onstrated. First, males tend to have larger bills than their mates. This may be explained by random mating, given the sexual dimorphism observed. Second, Common Terns mate assortatively according to bill size. This pattern may result if there is either a year-to-year component or an age component of bill size variation and if first-breeding birds return to the colony after experienced breeders have already established pairbonds and most birds retain their mates from year to year. ReceivedI I Jan. 1985, accepted30 Aug. 1985. Mating patterns may contribute significantly to the genetic structure of bird populations. When similar individuals tend to mate with each other (i.e., mating is positively assortative), progeny are more homozygous, and phenotypic variability in the population may be greater than when mating is either random or disassortative (Falconer 198 1, Halliday 1978, Par- tridge 1983; but see Lande 1977). Positive assortative mating based on the color morphs has been demonstrated for white and blue morphs of the Snow Goose (Chen cuerulescens) (Cooke et al. 1976). This involved discrimination according to a discrete variable (i.e., distinct blue and white morphs). It is more difficult to demonstrate mating patterns according to continuous variables, particularly in wild populations. -
Speciation in Parasites: a Population Genetics Approach
Review TRENDS in Parasitology Vol.21 No.10 October 2005 Speciation in parasites: a population genetics approach Tine Huyse1, Robert Poulin2 and Andre´ The´ ron3 1Parasitic Worms Division, Department of Zoology, The Natural History Museum, Cromwell Road, London, UK, SW7 5BD 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand 3Parasitologie Fonctionnelle et Evolutive, UMR 5555 CNRS-UP, CBETM, Universite´ de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France Parasite speciation and host–parasite coevolution dynamics and their influence on population genetics. The should be studied at both macroevolutionary and first step toward identifying the evolutionary processes microevolutionary levels. Studies on a macroevolutionary that promote parasite speciation is to compare existing scale provide an essential framework for understanding studies on parasite populations. Crucial, and novel, to this the origins of parasite lineages and the patterns of approach is consideration of the various processes that diversification. However, because coevolutionary inter- function on each parasite population level separately actions can be highly divergent across time and space, (from infrapopulation to metapopulation). Patterns of it is important to quantify and compare the phylogeo- genetic differentiation over small spatial scales provide graphic variation in both the host and the parasite information about the mode of parasite dispersal and their throughout their geographical range. Furthermore, to evolutionary dynamics. Parasite population parameters evaluate demographic parameters that are relevant to inform us about the evolutionary potential of parasites, population genetics structure, such as effective popu- which affects macroevolutionary events. For example, lation size and parasite transmission, parasite popu- small effective population size (Ne) and vertical trans- lations must be studied using neutral genetic markers. -
Natural Selection in Action During Speciation
Natural selection in action during speciation Sara Via1 Departments of Biology and Entomology, University of Maryland, College Park, MD 20742 The role of natural selection in speciation, first described by The Spyglass Darwin, has finally been widely accepted. Yet, the nature and time A course of the genetic changes that result in speciation remain mysterious. To date, genetic analyses of speciation have focused almost exclusively on retrospective analyses of reproductive iso- lation between species or subspecies and on hybrid sterility or Intrinsic barriers to Ancestral inviability rather than on ecologically based barriers to gene flow. gene flow evolve… Population Diverged “Good Species” However, if we are to fully understand the origin of species, we Populations must analyze the process from additional vantage points. By studying the genetic causes of partial reproductive isolation be- The Magnifying Glass tween specialized ecological races, early barriers to gene flow can B be identified before they become confounded with other species differences. This population-level approach can reveal patterns that become invisible over time, such as the mosaic nature of the genome early in speciation. Under divergent selection in sympatry, Ancestral Intrinsic barriers to the genomes of incipient species become temporary genetic mo- Population gene flow evolve… Diverged “Good Species” saics in which ecologically important genomic regions resist gene Populations exchange, even as gene flow continues over most of the genome. Analysis of such mosaic genomes suggests that surprisingly large Fig. 1. Two ways to study the process of speciation, which is visualized here genomic regions around divergently selected quantitative trait loci as a continuum of divergence from a variable population to a divergent pair of populations, and on through the evolution of intrinsic barriers to gene flow can be protected from interrace recombination by ‘‘divergence to the recognition of good species.