Biostratigraphy of the Bluffport Marl Member of the Demopolis Chalk, Cretaceous of Alabama

Total Page:16

File Type:pdf, Size:1020Kb

Biostratigraphy of the Bluffport Marl Member of the Demopolis Chalk, Cretaceous of Alabama BIOSTRATIGRAPHY OF THE BLUFFPORT MARL MEMBER OF THE DEMOPOLIS CHALK, CRETACEOUS OF ALABAMA by HARRY ELLSWORTH NEWMAN III A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geology and Geography in the Graduate School of the University of Alabama UNIVERSITY, ~BAMA ii TABLE OF CONTENTS Page LIST OF FIGURES . iv TABLES V PLATES V ABSTRACT vi INTRODUCTION 1 Purpose and scope 1 Location. 2 Previous investigations 7 Acknowledgements 10 AREAL FEATURES 11 Physiography • 11 Structure 12 STRATIGRAPHY 14 Lithostratigraphy 14 Selma Group 14 Mooreville Chalk. 16 Demopolis Chalk 17 Ripley Formation. 19 Prairie Bluff Chalk 22 Biostratigraphy 23 LOCALITIES STUDIED 25 Procedures of investigations 25 Outcrop descriptions 26 BLUFFPORT FAUNA. 40 Synonymy and description. 40 RESULTS. 60 Lithology 6o Paleontology 61 iii TABLE OF CONTENTS (CON' T) Page CONCLUSIONS • • • 70 REFERENCES CITED 75 iv LIST OF FIGURES FIGURE Page 1 Index map to collecting localities and generalized outcrop pattern of the Bluffport Marl Member of the Demopolis Chalk ••.• 3 2 Location map of Sumter County exposures • 4 3 Location map of Dayton exposure •.••. 5 4 Location map of Pleasant Hill exposure 6 5 Correlation chart of the outcropping Selma Group in Alabama 15 6 Exposure of sandstone ledges in the Lower Ripley Formation, locality 2 .••. 30 7 Typical exposure of the Bluffport Marl Member, locality 4 . • • • . • • . • • . 30 8 Type locality of the Bluffport Marl Member, locality 7 33 9 Contact in gulley between the Bluffport Marl Member and the Demopolis Chalk at the type locality, locality 7 ....... 33 10 Exposure of the Bluffport Marl Member showing some faunal groups and slope development due to weathering, locality 9. • . 36 11 Exposure of massive, ~omogeneous Demopolis Chalk, locality 12 . 36 V TABLES TABLE Page 1 Relative abundance of species occurring at localities studied. 27 2 Morphologic parameters of species occurring at localities studied ••••••••••••• 62 PLATES PLATE Page 1-7 Cretaceous fauna of the Bluffport Marl Member of the Demopolis Chalk •••.•••.••••.. 79 vi ABSTRACT The Bluffport Marl Member of the Demopolis Chalk was sampled to find what lithologic and paleontologic variations occur along the strike of this unit. The Bluffport Marl Member has been traced in Alabama from Sumter County eastward into the western edge of Lowndes County, somewhat farther east than reported in earlier pub­ lications. Insolubles increase upward in the section and along strike towards the eastern extent of the Bluffport Member, implying an eastern source of elastics. The abundant invertebrate faunal assemblage of the Bluffport decreases upward in the section and to the east in direct relation to the increase in elastics. Although the Bluffport species vary in abundance at different localities, the total number of species found is nearly consistent from lo­ cation to location in the lower part of the section. Morpholog­ ically, there is very little difference in the western and eastern Bluffport fauna, although there is a significant decrease in size of these assemblages toward the upper part of the section. Based on faunal changes, this increase in elastics reflects environmental conditions that were below those optimum conditions that existed in the lower and more western Bluffport section and in which these reef assemblages thrived. INTRODUCTION Purpose and Scope The Bluffport Marl Member of the Demopolis Chalk is a unit of calcareous, sandy clay that rests conformably on the Demopolis Chalk. The Demopolis Chalk is a formation in the Upper Cretaceous Selma Group. European Stages that are equivalent to the Selma Group range in age from Lower Santonian to Upper Maastrichtian. This Bluffport unit, which extends from 45-65 feet in thickness, represents an environ­ mental change that may be interpreted by lithology and paleontology. This paper represents a biostratigraphic study of the Bluffport Member. Some of the objectives include: 1. Definition of contact relationships. 2. Quantitative lithologic changes along strike and dip. 3. Determination of abundance and description of Bluffport macrofossils (including photographic illustrations). 4. Determination of morphologic variation in selected species. 5. Determination of sediment-fossil relationships. 6. Environmental analysis,of the Bluffport Member. 2 The type locality of the Bluffport in Sumter County, Alabama, is used as reference for other sampled areas. This study hopefully will serve as a guide for further bio­ stratigraphic investigations in other parts of the Alabama section. Location The Bluffport crops out along a N.7o°w. strike in Sumter County. The strike of the member changes to nearly E.-W. to the southeast through :Marengo, Perry, Dallas and Lowndes Counties, Alabama. Most work was done in Sumter County, the location of the type locality, and elsewhere along strike where the Bluffport is well exposed. There are 13 localities at which the Bluffport was sampled lithologically or paleontologically. The nine localities where sediment-fossil relationships were studied are illustrated in Figure 1 and in more detail in Figures 2, 3 and 4. The other lo­ calities are illustrated only in Figure 1 as localities 2, 4, 11 and 13. These four points represent areas of Bluffport exposures, but due to limited fossil assemblages or poor exposures, are not as significant as the other locations. Of the first 9 localities only numbers 1 and 9 occur outside the Epes Quadrangle, Sumter County. The Epes Quadrangle was mapped by Monroe and Hunt (1958) and re­ presents the only detailed mapping of the Bluffport in Alabama. Sumter County provides the best exposures of the Bluffport in Alabama. 'fl\"..... 1 .,,.. 1/ IL sW.,. "I ._/ -.A.I ~,- )- - --I .S 5' --, - \\) ;. EUTAW□ (' • -- Kd•"'S j >"" • 2 MARION \ _.,,; GREENE '\k ' D ' 1 6 ,,,,. ' i:J I PERRY \ • D ~- HALE • -- SELMA JU-.. I / ~ N LIVINGSTON L . ----, I D \ ,,"-1._ {': __::,.. ~ • . Kdo J ~ _______SUMTER ;._ ~~ I >-v- ' + ,."' Kdu I □ UNDEN I HAYMEVIU.... E I K!S,jKdu-,l ~{,"L/ D .. Kr Kr ,-J ~ • q LI( I '~~ALL~S _ MARENGO ------I J I iL__ LOWNDES - __j 0 5 10 21) 30 MILES EXPLANATION ~o RIPLEY FORMATION ~{ Kr Kdu BLUFFPORT MARL MEMBER n.~ I-~ ::, ~ Kd DEMOPOLIS CHALK u e13 COLLECTING LOCALITIES FIGURE 1. INDEX MAP TO COLLECTING LOCALITIES GENERALIZED OUTCROP PATTERN Of THE BLUFFPORT MARL MEMBER OF THE DEMOPOLIS CHALK w 4 • LOCALITY 1 17 I N + 4 MILES FIGURE 2. LOCATION MAP OF SUMTER COUNTY EXPOSURES 5 +N Miles FIGURE 3. LOCATION OF DAYTON EXPOSURE 6 1 0 1 2 3 4 MILES A Fl E-----------3 FIGURE 4. LOCATION MAP OF PLEASANT HILL EXPOSURE 7 The exact location of each exposure shown in Figure 1 is given below: 1. sw½NE½ sec .20, T .21N., R.3W. 2. sw¾ sec. 7, T .20N., R.2W. 3. NE¾NW¾ sec.34, T .20N., R.2W. 4. NW½NW·½ sec.35, T .20N., R.2W. 5. SW¼3E½ sec.31, T .20N., R.lW. 6. NE.1.NE.1.4 4 sec.7, T.19N., R.lW. 7. sw.1.™.1.4 4 sec.27, T.19N., R.lW. 8. NW.l.sE.l.4 4 sec.31, T .19N., R.lE. 9. SWlNE.1.4 4 sec .16, T .18N., R.lE. 10. SE.1.NWl4 4 sec. 9, T.16N., R.4E. 11. SElNW.1.4 4 sec.10, T .15N., R.6E. 12. NW½SE½ sec .13, T.14N., R.llE. 13. SW½NE½ sec.5, T .13N., R.12E. Previous Investigations Many informative studies have been made on these Upper Cretaceous units and their fossils. Listed below are some that were found most useful. Morton (1829) made the first reference to Cretaceous deposits in Alabama while in 1833 Withers described the Black Prairie Belt and mentioned the later named Arcola Limestone Member of the Mooreville Chalk. In 1834 McGuire stated that the ocean once covered the prai­ ries of Alabama. He gave an interesting discussion of the prairie extent along with some fossil discoveries. Morton's 1834 Synopsis of the organic remains of the Cretaceous Group of the United States is one of the first elaborate studies of Cretaceous fauna. Hilgard (1871) 8 presented a map on the Cretaceous deposits of the Gulf of Mexico. Smith, Langdon and Johnson (1894) published the Report~ the geology of the Coastal Plain of Alabama. In this report the "Rotten Limestone" was given the co-name Selma Chalk. This is still an excellent report for outcrop references in Alabama. Weller (1907) discussed the stratig­ raphy of the New Jersey Cretaceous material. He also described and illustrated many Cretaceous species. Stephenson (1914) correlated and defined the Cretaceous deposits of the eastern Gulf region. The Exogyra ponderosa, !· costata and E. cancellata zones were discussed as to their importance. He also described invertebrate fossils from the Upper Cretaceous deposits of North Carolina (1923), as well as those in the Cretaceous rocks of Alabama (1926). A geologic map of Alabama is included in Stephenson's 1926 report. Stephenson (1928) suggested some Alabama Cretaceous correlations with European deposits and traced Exogyra cancellata for 2500 miles along the Atlantic and Gulf coast (1933). In 1936 he described some new forms of 0streidae from the Gulf region. The fauna of the Ripley Formation of Coon Creek, Tennessee, was described and illustrated by Wade in 1926. Stephenson and Monroe (1938) proposed a reclassification of the Upper Cretaceous deposits of Alabama. The lower part of the Selma was shown to merge and intertongue eastward into the Blufftown For­ mation, the middle part of the Cusseta Sand and the upper part of the Ripley Formation. The Prairie Bluff Chalk was shown to merge gradually eastward into the Providence Sand. In this report the Arcola Limestone Member of the Moorevjlle Chalk was named and des­ cribed. In 1940 they discussed the Upper Cretaceous deposits of 9 Mississippi.
Recommended publications
  • Stratigraphy, Paleontology and Correlation of Lower Cretaceous Exposures in Southeastern New Mexico Barry S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Stratigraphy, paleontology and correlation of lower Cretaceous exposures in southeastern New Mexico Barry S. Kues and Spencer G. Lucas, 1993, pp. 245-260 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Paleontology and Sedimentology of Middle Eocene Rocks in Lago Argentino Area, Santa Cruz Province, Argentina
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 46 (1): 27-47. Buenos Aires, 30-04-2009 ISSN 0002-7014 Paleontology and sedimentology of Middle Eocene rocks in Lago Argentino area, Santa Cruz Province, Argentina Silvio CASADÍO1,2, Miguel GRIFFIN1,2, Sergio MARENSSI3,2, Laura NET4, Ana PARRAS1,2, Martín RODRÍGUEZ RAISING5,2 and Sergio SANTILLANA3 Abstract. Sedimentological and paleontological study of the Man Aike Formation at the Estancia 25 de Mayo, SW of Santa Cruz Province, Argentina, represents the evolution of an incised valley from fluvial to marine environment during the late middle Eocene. At the base of the unit there is an unconformity that corresponds to fluvial channels which cut down into the underlying Maastrichtian sandstones of the Calafate Formation. The fauna of invertebrates (mostly molluscs) illustrated herein was collected from shell beds interpreted as tidal ravinement surfaces. The fauna includes terebratulid brachiopods, bivalves of the families Malletiidae, Mytilidae, Pinnidae, Ostreidae, Pectinidae, Carditidae, Crassatellidae, Lahillidae, Mactridae, Veneridae, and Hiatellidae, and gastropods of the families Trochidae and Calyptraeidae, and a member of Archaeogastropoda of uncertain affinities. The similarities of this fauna with that recorded in the Upper Member of the Río Turbio Formation, together with 87Sr/86Sr ages, sug- gest a late Middle Eocene age for the Man Aike Formation. Resumen. PALEONTOLOGÍA Y SEDIMENTOLOGÍA DE LAS ROCAS DEL EOCENO MEDIO EXPUESTAS EN EL ÁREA DE LAGO ARGENTINO, PROVINCIA DE SANTA CRUZ, ARGENTINA. Los estudios sedimentológicos y paleontológicos real- izados en rocas asignadas a la Formación Man Aike, expuestas en la estancia 25 de Mayo, al sur de Calafate, provincia de Santa Cruz, Argentina, sugieren que esta unidad representa la evolución de un valle inciso desde ambientes fluviales a marinos durante el Eoceno medio tardío.
    [Show full text]
  • Detrital Zircon Provenance and Lithofacies Associations Of
    geosciences Article Detrital Zircon Provenance and Lithofacies Associations of Montmorillonitic Sands in the Maastrichtian Ripley Formation: Implications for Mississippi Embayment Paleodrainage Patterns and Paleogeography Jennifer N. Gifford 1,*, Elizabeth J. Vitale 1, Brian F. Platt 1 , David H. Malone 2 and Inoka H. Widanagamage 1 1 Department of Geology and Geological Engineering, University of Mississippi, Oxford, MS 38677, USA; [email protected] (E.J.V.); [email protected] (B.F.P.); [email protected] (I.H.W.) 2 Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL 61790, USA; [email protected] * Correspondence: jngiff[email protected]; Tel.: +1-(662)-915-2079 Received: 17 January 2020; Accepted: 15 February 2020; Published: 22 February 2020 Abstract: We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County,Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input.
    [Show full text]
  • Geological Survey
    DEPABTMENT OF THE INTEKIOR BULLETIN OF THE UNITED STATES GEOLOGICAL SURVEY N~o. 151 WASHINGTON GOVERNMENT PRINTING OFFICE 1898 UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIEECTOR THE LOWER CRETACEOUS GRYPMAS OF THK TEX.AS REGION ROBERT THOMAS HILL THOMAS WAYLA'ND VAUGHAN WASHINGTON GOVERNMENT FEINTING OFFICE 18.98 THE LOWER CRETACEOUS GRYPHJ1AS OF THE TEXAS REGION. BY I EOBEET THOMAS HILL and THOMAS WAYLAND VAUGHAN. CONTENTS. Page. Letter of transmittal....._..........._....._ ............................ 11 Introduction ...---._._....__................._....._.__............._...._ 13 The fossil oysters of the Texas region.._._.._.___._-..-._._......-..--.... 23 Classification of the Ostreidae. .. ...-...---..-.......-.....-.-............ 24 Historical statement of the discovery in the Texas region of the forms referred to Gryphsea pitcher! Morton ................................ 33 Gryphaea corrugata Say._______._._..__..__...__.,_._.________...____.._ 33 Gryphsea pitcheri Morton............................................... 34 Roemer's Gryphsea pitcheri............................................ 35 Marcou's Gryphsea pitcheri............................................ 35 Blake's Gryphaea pitcheri............................................. 36 Schiel's Gryphsea pitcheri...........................,.:................ 36 Hall's Gryphsea pitcheri (= G. dilatata var. tucumcarii Marcou) ...... 36 Heilprin's Gryphaea pitcheri.....'..................................... 37 Gryphaea pitcheri var. hilli Cragin...................................
    [Show full text]
  • Electrical Phenomena at the Washington Monument
    pebbles cemented n-ith mhite limestone, ancl gracl- that the mhole of the old becl is to some extent 1,er- nally changing upmarcl into a firm, barren, homoge- meatecl by the vatels of the unclergro~mclriver.- neous limestone. The extent and direction of this unclergro~~ncl This formation mas in continuation of, or some- channel, and the determination of other streams times below, the horizon of the Exogyra arietina than the Blanco which may be tapped by it, are marl. Here, then, mas the solution of the problem promising subjects of future investigation, which I of the San XIarcos. The rocks before me were of hope at an early clate to unclertake, not only in the the later cretaceous, deposited upon the gravel and hope of gaining, by a stuclp of the amount of erosion shingle -which had formecl the bed of a river during of the older rocks, some idea of the duration of the the period of emergence. They had choked up and interval betmeen the tmo periods of rock formation, rendered impervious the superficial layers of the but of obtaining some inforination concerniug the river-bed, but doubtless left the loner gravel and fresh-mater life of that period. EDTVIKJ. POND. sand beds in as gooil condition for carrying water as Austin. Tex., Nay 18. ever. To make the ericlence comolete. I found, on examination of the rock ma, whiih lies only a few Electrical phenomena at the Washington feet above the river, that it is the Soft limestone of the later cretaceous, containing numerous specimens monument.
    [Show full text]
  • Highly Diversified Late Cretaceous Fish Assemblage Revealed by Otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, Usa)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 111-155. March 2020 HIGHLY DIVERSIFIED LATE CRETACEOUS FISH ASSEMBLAGE REVEALED BY OTOLITHS (RIPLEY FORMATION AND OWL CREEK FORMATION, NORTHEAST MISSISSIPPI, USA) GARY L. STRINGER1, WERNER SCHWARZHANS*2 , GEORGE PHILLIPS3 & ROGER LAMBERT4 1Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA. E-mail: [email protected] 2Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100, Copenhagen, Denmark. E-mail: [email protected] 3Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA. E-mail: [email protected] 4North Mississippi Gem and Mineral Society, 1817 CR 700, Corinth, Mississippi, 38834, USA. E-mail: [email protected] *Corresponding author To cite this article: Stringer G.L., Schwarzhans W., Phillips G. & Lambert R. (2020) - Highly diversified Late Cretaceous fish assemblage revealed by otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, USA). Riv. It. Paleontol. Strat., 126(1): 111-155. Keywords: Beryciformes; Holocentriformes; Aulopiformes; otolith; evolutionary implications; paleoecology. Abstract. Bulk sampling and extensive, systematic surface collecting of the Coon Creek Member of the Ripley Formation (early Maastrichtian) at the Blue Springs locality and primarily bulk sampling of the Owl Creek Formation (late Maastrichtian) at the Owl Creek type locality, both in northeast Mississippi, USA, have produced the largest and most highly diversified actinopterygian otolith (ear stone) assemblage described from the Mesozoic of North America. The 3,802 otoliths represent 30 taxa of bony fishes representing at least 22 families. In addition, there were two different morphological types of lapilli, which were not identifiable to species level.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Phylogeographic Study of the Dwarf Oyster, Ostreola Stentina
    Marine Biology Archimer, archive institutionnelle de l’Ifremer Volume 150, Number 1, October 2006 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s00227-006-0333-1 ©2006 Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris Sylvie Lapègue1, Inès Ben Salah2, Frederico M. Batista3, 4, Serge Heurtebise1, Lassad Neifar2 and Pierre Boudry1 (1) Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France blisher-authenticated version is av (2) Faculté des Sciences de Sfax, Laboratoire d’écobiologie Animale, BP 802, 3038 Sfax, Tunisia (3) Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSul, Av. 5 de Outubro, 8700-305 Olhao, Portugal (4) Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal Corresponding author : [email protected] Abstract: Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I).
    [Show full text]
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR004 The Late Cretaceous chimaeroid fish, Ischyodus bifurcatus Case, 1978 (Chondrichthyes: Holocephali), from California, USA, and its paleobiogeographical significance EVANAccepted D. JOHNSON-RANSOM1, EVGENY V. POPOV2,3, THOMAS A. DEMÉRÉ4, AND KENSHU SHIMADA1,5,6 1Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, USA (e-mail: [email protected]) 2Department of Paleontology, Geological Faculty, Saratov State University, 83, Astrakhanskaya Street, Saratov 410012, Russia 3Institute of Geology and Petroleum Technology,manuscript Kazan Federal University, Kremlevskaya Str. 4/5, 420008 Kazan, Russia 4Department of Paleontology, San Diego Natural History Museum, 1788 El Prado, San Diego, California 92101, USA 5Department of Environmental Science and Studies, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, USA 6Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601, USA Abstract. A nearly complete right mandibular tooth plate of Ischyodus bifurcatus Case (Holocephali: Chimaeroidei) is reported from the Point Loma Formation (upper Campanian) of the Upper Cretaceous Rosario Group in southern California, USA.
    [Show full text]
  • Geology of the Troy, Miss., 7.5 Minute Topographic Quadrangle Chickasaw and Pontotoc Counties Mississippi by Charles T
    ~ Geology of the Troy, Miss., 7.5 Minute Topographic Quadrangle Chickasaw and Pontotoc Counties Mississippi by Charles T. Swann, R.P.G. and Jeremy J. Dew Mississippi Mineral Resources Institute 310 Lester Hall University, Mississippi 38677 Mississippi Mineral Resources Institute Open - File Report 09-2S August, 2009 On The Cover The Mississippi Office of Geology drilled the MMRI-Reeves, No. 1 well in support of the MMRI’s surface mapping efforts. The cover picture is the drill rig set up in sand pits in sec.22, T.12S, R.3E. A set of core samples as well as a set of geophysical logs were obtained during the drilling operations. The well was begun in the lower Clayton section (Tertiary) and reached a total depth of 403 feet in the Demopolis Formation (Cretaceous). -i- TABLE OF CONTENTS On The Cover ............................................................................................................................. i Table of Contents . ..................................................................................................................... ii List of Tables ............................................................................................................................ iii List of Figures . ......................................................................................................................... iii Abstract...................................................................................................................................... 1 Introduction. .............................................................................................................................
    [Show full text]
  • Campanian and Austinian-Tayloran Stage Boundaries in Mississippi and Alabama Using Calcareous Microfossils
    Documentation of the Santonian­ Campanian and Austinian-Tayloran Stage Boundaries in Mississippi and Alabama Using Calcareous Microfossils U.S. GEOLOGICAL SURVEY BULLETIN 1884 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of
    [Show full text]