Proximal Humerus Fracture Rehabilitation. HODGSON, Steve A

Total Page:16

File Type:pdf, Size:1020Kb

Proximal Humerus Fracture Rehabilitation. HODGSON, Steve A Proximal humerus fracture rehabilitation. HODGSON, Steve A. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/20723/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version HODGSON, Steve A. (2006). Proximal humerus fracture rehabilitation. Doctoral, Sheffield Hallam University (United Kingdom).. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Learning and IT Services Collegiate Learning Centre I Collegiate Crescent Campus i I Sheffield S1G2BP j 101 853 270 6 r e f e r e n c e ProQuest Number: 10702821 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10702821 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Proximal Humerus Fracture Rehabilitation Steve Hodgson A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the degree of Doctor of Philosophy WaiS'i:^§y August 2006 I. Declaration I hereby declare that, to my best knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institution of higher learning, except where due acknowledgement has been made in the text. Steve Hodgson 1 August 2006 II. Acknowledgements The idea for the study originated from a discussion with David Stanley who willingly gave up his time to consider the proposal and to give advice. His support, allowing his patients to enter the study, reading papers and passing comment, has been invaluable in the whole process. Inputting data and ensuring that the follow-up assessments were completed were both expertly managed by Julie Harris; her skill and dedication were crucial to the study and made the whole process easier. I would like to thank all the physiotherapists at the Northern General hospital who treated the patients and willingly contributed their time to help with the smooth running of the study. For their statistical advice I would like to thank Stephen Walters and Mike Grimley who never tired of my constant questioning and were always helpful with their comments. I would like to thank both Dr Sue Mawson and Dr John Saxton who supervised my dissertation for their constant support and encouragement. Finally, I would like to thank all the patients who willingly gave up their time to contribute to the study and whose only motivation was to help other people with a similar injury. Thank you. 3 III. Dedication This is dedicated to my children, Jenna and Helena, for asking why I still had to do homework at my age and to my parents for their constant support and encouragement. I would also thank Karen for helping keep my sanity during the final draft. 4 IV. Figures & Tables Figures Page Figure 1: Proximal humerus fracture 20 Figure 2: Fracture incidence by type of fracture 39 Figure 3: Exponential growth in PH fracture incidence 42 Figure 4: Incidence of PH fractures by gender 43 Figure 5: Age-specific annual incidence of PH fractures 45 Figure 6: Level of disability after a fracture grouped by age 73 Figure 7: Fall Direction with a Proximal Humerus fracture 81 Figure 8: Flow-chart (admission to entering study) 143 Figure 9: Patient Flow-chart at follow-up 179 Figure 10: Treatment sessions by group allocation 181 Figure 11: Constant shoulder score at 8 to 52 weeks 183 Figure 12: Regression Modelling Analysis CSS 185 Figure 13: Regression Analysis Modelling SF-36 (RLP) 191 Figure 14: Regression Analysis Modelling SF-36 (PF) 192 Figure 15: Regression Analysis Modelling SF-36 (P) 192 Figure 16: CSDQ scores for each question at two year follow-up 196 Figure 17: SF-36 Score (Pain) by gender 200 Figure 18: SF-36 Score (Physical Function) by gender 200 Figure 19: SF-36 Score (Pain) by level of deprivation. 201 Figure 20: SF-36 Score (PF) by level of deprivation. 202 Figure 21: SF-36 Score (RLP) by level of deprivation 202 5 Tables Table 1: Outcome variables 155 Table 2: CSDQ validation data 166 Table 3: Response rate 174 Table 4: Subjects’ baseline characteristics 176 Table 5: Complications reported over three years of the study 182 Table 6: Constant Shoulder Score difference (52 weeks) 184 Table 7: Constant shoulder score results up to one year 186 Table 8: Short form (SF-36) health survey 189 Table 9: Follow-up at one & two years 193 Table 10: Patient characteristics;at two years 194 Table 11: Shoulder disability (CSDQ) by group allocation 195 Table 12: Model output (binary logistic modelling) 197 Table 13: Regression modelling of SF-3 6 (Pain) 199 6 V. Abbreviations ADL Activities of Daily Living AO Arbeitsgemeinschaft fur Osteosynthesefragen BMC Bone Mineral Content BMI Body Mass Index BMD Bone Mineral Density P Bodily pain (SF-36) CSDQ Croft Shoulder Disability Questionnaire CSS Constant Shoulder Score CT Computerised Tomography CVA Cardiovascular Accident DoH Department of Health EQ EuroQoL GP General Practitioner/ General Practice ICC Intraclass correlation coefficient LLI Long term limiting illness M Million MS Musculoskeletal N Newtons (force) NHS National Health System OA Osteoarthritis PF Physical function (SF-36) PH Proximal Humerus POP Plaster of Paris RCT Randomised Controlled Trial RLP Role limitation-physical (SF-36) ROM Range of Movement RR Relative Risk SES Socioeconomic status SD Standard Deviation SDQ-NL Dutch Shoulder Disability Questionnaire SF-36 Short Form 36 Health Survey SPADI Shoulder Pain and Disability Index STHFT Sheffield Teaching Hospitals Foundation Trust SRQ Shoulder Rating Questionnaire UK United Kingdom USA United States of America WHO World Health Organisation 7 VI. Abstract Background The western world faces an explosion in the number of patients who will fracture their proximal humerus (PH) as a result of the rapidly changing demographics and the increase in osteoporosis. In 1998 there were 110 000 PH fractures in the United Kingdom (UK) and epidemiological studies indicate that the PH fracture incidence is increasing. Scant evidence exists to the optimum management and rehabilitation of these fractures and the aims of the study were to investigate the effect of an accelerated rehabilitation programme on patients’ recovery. Method A Randomised Controlled Trial (RCT) comparing two rehabilitation programmes (n=86) with patients who sustained two-part fractures of the proximal humerus was performed. Patients were randomised to receive immediate physiotherapy within one week (Group A) or delayed physiotherapy (Group B) after 3 weeks immobilisation. Assessment was at 8, 16 and 52 weeks with the Constant Shoulder Score (CSS), Short form generic health survey (SF-36) and Croft Shoulder Disability Questionnaire (CSDQ). Additional reassessment was undertaken at two years. Regression analysis modelling was conducted to identify the risk factors for developed long-term shoulder disability. Results At the primary outcome point (16 weeks) Group A experienced less pain (p<0.01) and had greater shoulder function (pO.OOl) compared to Group B. At 52 weeks the differences between the Groups had reduced. Overall, Group A experienced less pain as measured with the SF-36 (mean difference 486 Cl 83 to 889, p<0.01) and improved 8 shoulder function (mean difference in AUC 6.4 [95% Cl: 2.5 to 10.5], p< 0.002). At one year, shoulder disability (CSDQ) was 42.8% in Group A and 72.5% in Group B (p<0.01). By two years, shoulder disability in Group A remained unchanged (43.2%), but had reduced in Group B (59.5%). Discussion Immediate physiotherapy following a proximal humerus fracture results in faster recovery with maximal functional benefit being achieved at one year and requires fewer treatment sessions (9 versus 14 treatments, Group-A and B respectively). Delayed rehabilitation by three weeks shoulder immobilisation produces a slower recovery. The belief that patients make an excellent recovery after one year is questionable as 25 patients (33.5%) still reported considerable shoulder disability after two years of their injury. Gender (female), age and high levels of social deprivation were identified as risk factors for continued shoulder problems at two years after the fracture. Conclusions and recommendations This work suggests that patients who fracture their PH should not be immobilised before referral for physiotherapy as immediate referral to physiotherapy (within 1 week) results in faster recovery and less reported pain. Physiotherapy should be targeted towards those patients who are identified as having a greater risk of developing long-standing problems. Currently, a wide variation in PH fracture management exists in UK hospitals and implementing clinical care pathways will help target finite resources. 9 Contents Declaration I Acknowledgements II Dedication III List of Figures and tables IV Abbreviations V Abstract VI Chapter 1: Introduction 17 1.1 An ageing population:
Recommended publications
  • Pseudogout at the Knee Joint Will Frequently Occur After Hip Fracture
    Harato and Yoshida Journal of Orthopaedic Surgery and Research (2015) 10:4 DOI 10.1186/s13018-014-0145-9 RESEARCH ARTICLE Open Access Pseudogout at the knee joint will frequently occur after hip fracture and lead to the knee pain in the early postoperative period Kengo Harato1,3*† and Hiroki Yoshida2† Abstract Background: Symptomatic knee joint effusion is frequently observed after hip fracture, which may lead to postoperative knee pain during rehabilitation after hip fracture surgery. However, unfortunately, very little has been reported on this phenomenon in the literature. The purpose of the current study was to investigate the relationship between symptomatic knee effusion and postoperative knee pain and to clarify the reason of the effusion accompanied by hip fracture. Methods: A total of 100 patients over 65 years of age with an acute hip fracture after fall were prospectively followed up. Knee effusion was assessed on admission and at the operating room before the surgery. If knee effusion was observed at thetimeofthesurgery,synovialfluidwascollectedintosyringes to investigate the cause of the effusion using a compensated polarized light microscope. Furthermore, for each patient, we evaluated age, sex, radiographic knee osteoarthritis (OA), type of the fracture, laterality, severity of the fracture, and postoperative knee pain during rehabilitation. These factors were compared between patients with and without knee effusion at the time of the surgery. As a statistical analysis, we used Mann–Whitney U-test for patients’ age and categorical variables were analyzed by chi-square test or Fisher’sexacttest. Results: A total of 30 patients presented symptomatic knee effusion at the time of the surgery.
    [Show full text]
  • Treatment of Common Hip Fractures: Evidence Report/Technology
    This report is based on research conducted by the Minnesota Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA 290 2007 10064 1). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services. This report is intended as a reference and not as a substitute for clinical judgment. This report may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. Evidence Report/Technology Assessment Number 184 Treatment of Common Hip Fractures Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. HHSA 290 2007 10064 1 Prepared by: Minnesota Evidence-based Practice Center, Minneapolis, Minnesota Investigators Mary Butler, Ph.D., M.B.A. Mary Forte, D.C. Robert L. Kane, M.D. Siddharth Joglekar, M.D. Susan J. Duval, Ph.D. Marc Swiontkowski, M.D.
    [Show full text]
  • Fracture Lower Extremity Part II
    CONTENTS FEMUR SHAFT BOTH BONE SUBTROCHANTERIC TIBIAL PLAFON FRACTURE LOWER FRACTURE ANKLE EXTREMITIES: PART 2 FRACTURE FEMUR FOOT SUPRACONDYLAR FRACTURE FEMUR CALCANEUS PATELLA TALUS WORAWAT LIMTHONGKUL, M.D. 14 JAN 2013 TIBIA LISFRANC’S TIBIAL PLATEAU METATARSAL 1 2 SUBTROCHANTERIC FRACTURE FEMUR A PART OF FRACTURE OCCUR BETWEEN TIP OF LESSER TROCHANTER AND A POINT 5 SUBTROCHANTERIC CM DISTALLY CALCAR FEMORALE FRACTURE LARGE FORCES ARE NEEDED TO CAUSE FRACTURES IN 5 CM YOUNG & ADULT INJURY IS RELATIVELY TRIVIAL IN ELDERLY 2° CAUSE: OSTEOPOROSIS, OSTEOMALACIA, PAGET’S 3 4 SUBTROCHANTERIC FRACTURE FEMUR TREATMENT INITIAL FEMUR SHAFT TRACTION DEFINITE FRACTURE ORIF WITH INTRAMEDULLARY NAIL OR 95 DEGREE HIP- SCREW-PLATE 5 6 FEMUR FRACTURE FILM HIPS SEVERE PAIN, UNABLE TO BEAR WEIGHT 10% ASSOCIATE FEMORAL SUPRACONDYLAR NECK FRACTURE FEMUR FRACTURE TREATMENT: ORIF WITH IM NAIL OR P&S COMPLICATION: HEMORRHAGE, NEUROVASCULAR INJURY, FAT EMBOLI 7 8 SUPRACONDYLAR FEMUR FRACTURE SUPRACONDYLAR ZONE DIRECT VIOLENCE IS THE USUAL CAUSE PATELLA FRACTURE LOOK FOR INTRA- ARTICULAR INVOLVEMENT CHECK TIBIAL PULSE TREATMENT: ORIF WITH P&S 9 10 PATELLA FRACTURE PATELLA FRACTURE FUNCTION: LENGTHENING THE ANTERIOR LEVER ARM DDX: BIPATITE PATELLA AND INCREASING THE (SUPEROLATERAL) EFFICIENCY OF THE QUADRICEPS. TREATMENT: DIRECT VS INDIRECT NON-DISPLACE, INJURY INTACT EXTENSOR : CYLINDRICAL CAST TEST EXTENSOR MECHANISM DISPLACE, DISRUPT EXTENSOR: ORIF WITH VERTICAL FRACTURE: TBW MERCHANT VIEW 11 12 PATELLAR DISLOCATION ADOLESCENT FEMALE DISLOCATION AROUND USUALLY
    [Show full text]
  • Medical Consultation for the Elderly Patient with Hip Fracture
    J Am Board Fam Pract: first published as 10.3122/15572625-11-5-366 on 1 September 1998. Downloaded from CLINICAL REVIEW Medical Consultation for the Elderly Patient With Hip Fracture RichardJ Ackermann, MD Background: This article describes a family physician geriatrician's perspective on the comprehensive management of hip fracture in frail elderly patients. Primary care physicians might be called upon to pro­ vide medical consultation for these patients. Methods: Guidelines were developed by a combination of personal experience in consulting for several hun­ dred elderly patients with hip fracture at a large community hospital, literature review using the key words "hip fractures," "aged," and "aged, 80 and over," and educational presentations for family practice residents. Results and Conclusions: Elderly patients with hip fracture offer a prime opportunity for comprehensive geriatric assessment. Intertrochanteric fractures are almost always treated with internal fixation, whereas femoral neck fractures can be treated by either fixation or by hemiarthroplasty. Hip fracture should be re­ garded as a surgical urgency, and generally operation should not be delayed, even if patients have serious comorbidity. The family physician can be instrumental in preparing the patient for surgery, preventing and treating complications, and assisting in the placement and rehabilitation of patients after hospital dis­ charge. 0 Am Board Fam Pract 1998; 11:366-77.) As the result of an aging population, family physi­ Some hip fractures and the falls that precede cians are increasingly likely to participate in the them are probably preventable. Strategies to de­ care of elderly patients suffering hip fracture. This tect and treat osteoporosis, especially in high-risk copyright.
    [Show full text]
  • What You Should Know About Hip Fractures
    Information O from Your Family Doctor What You Should Know About Hip Fractures What is a hip fracture? surgery. It may involve putting pins, rods, and A hip fracture is a break in the top of your plates into the hip joint. Some hip fractures are upper leg bone near the hip joint, just below treated with a hip replacement. The orthopedic the waist. The type of hip fracture depends surgeon will help decide which surgery is best on which part of the bone breaks. Most hip for you. fractures are caused by a fall in people 65 years or older. People with weak bones, known as What happens next? osteoporosis (OSS-tee-oh-puh-RO-sis), are You will need to work with a physical therapist more likely to break a hip. at home, in the therapist’s office, or in a skilled nursing facility to regain use of your hip. You will What are the symptoms? practice bending, walking, and climbing stairs. The most common symptom is pain in the hip For most patients, your doctor will or groin area. The pain is usually worse when recommend a medicine called a bisphosphonate you try to move the hip. There is a lot of pain (bis-FOSS-fuh-nate). This is taken by mouth. when you walk. Most people cannot walk with It can help lower your chance of another hip a hip fracture. fracture. How is it found? How can hip fractures be prevented? An x-ray can show if the hip is broken and You can prevent falls by talking to your doctor which part of the bone is fractured.
    [Show full text]
  • ACR Appropriateness Criteria Acute Hip Pain-Suspected Fracture
    Revised 2018 American College of Radiology ACR Appropriateness Criteria® Acute Hip Pain-Suspected Fracture Variant 1: Acute hip pain. Fall or minor trauma. Suspect fracture. Initial imaging. Procedure Appropriateness Category Relative Radiation Level Radiography hip Usually Appropriate ☢☢☢ Radiography pelvis Usually Appropriate ☢☢ Radiography pelvis and hips Usually Appropriate ☢☢☢ CT pelvis and hips with IV contrast Usually Not Appropriate ☢☢☢ CT pelvis and hips without and with IV Usually Not Appropriate contrast ☢☢☢☢ CT pelvis and hips without IV contrast Usually Not Appropriate ☢☢☢ MRI pelvis and affected hip without and Usually Not Appropriate with IV contrast O MRI pelvis and affected hip without IV Usually Not Appropriate contrast O Bone scan hips Usually Not Appropriate ☢☢☢ US hip Usually Not Appropriate O Variant 2: Acute hip pain. Fall or minor trauma. Negative radiographs. Suspect fracture. Next imaging study. Procedure Appropriateness Category Relative Radiation Level MRI pelvis and affected hip without IV Usually Appropriate contrast O CT pelvis and hips without IV contrast Usually Appropriate ☢☢☢ CT pelvis and hips with IV contrast Usually Not Appropriate ☢☢☢ CT pelvis and hips without and with IV Usually Not Appropriate contrast ☢☢☢☢ MRI pelvis and affected hip without and with Usually Not Appropriate IV contrast O Bone scan hips Usually Not Appropriate ☢☢☢ US hip Usually Not Appropriate O ACR Appropriateness Criteria® 1 Acute Hip Pain-Suspected Fracture Acute Hip Pain-Suspected Fracture Expert Panel on Musculoskeletal Imaging: Andrew B. Ross, MD, MPHa; Kenneth S. Lee, MD, MBAb; Eric Y. Chang, MDc; Behrang Amini, MD, PhDd; Jennifer K. Bussell, MDe; Tetyana Gorbachova, MDf; Alice S. Ha, MDg; Bharti Khurana, MDh; Alan Klitzke, MDi; Pekka A.
    [Show full text]
  • Lower Extremity Fracture Eponyms (Part 2) Philip Kin-Wai Wong1, Tarek N Hanna2*, Waqas Shuaib3, Stephen M Sanders4 and Faisal Khosa2
    Wong et al. International Journal of Emergency Medicine (2015) 8:25 DOI 10.1186/s12245-015-0076-1 REVIEW Open Access What’s in a name? Lower extremity fracture eponyms (Part 2) Philip Kin-Wai Wong1, Tarek N Hanna2*, Waqas Shuaib3, Stephen M Sanders4 and Faisal Khosa2 Abstract Eponymous extremity fractures are commonly encountered in the emergency setting. Correct eponym usage allows rapid, succinct communication of complex injuries. We review both common and less frequently encountered extremity fracture eponyms, focusing on imaging features to identify and differentiate these injuries. We focus on plain radiographic findings, with supporting computed tomography (CT) images. For each injury, important radiologic descriptors are discussed which may need to be communicated to clinicians. Aspects of management and follow-up imaging recommendations are included. This is a two-part review: Part 1 focuses on fracture eponyms of the upper extremity, while Part 2 encompasses fracture eponyms of the lower extremity. Keywords: Eponyms; Fractures; Lower extremities; Imaging Introduction Review: Lower extremity fracture eponyms Eponyms are embedded throughout medicine; they Pipkin fracture can be found in medical literature, textbooks, and Femoral head fractures are relatively uncommon and even mass media. Their use allows physicians to are typically associated with hip dislocations after se- quickly provide a concise description of a complex vere high-impact trauma such as a motor vehicle colli- injury pattern. Eponymous extremity fractures are sion. Femoral head fractures are commonly grouped commonly encountered in the emergency setting and into the Pipkin classification (see Table 1) after the work are frequently used in interactions amongst radiolo- of the orthopedic surgeon Garrett Pipkin in 1957 (Fig.
    [Show full text]
  • Current Management in Osteoporotic Hip Fracture
    Mini Review ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.24.004063 Current Management in Osteoporotic Hip Fracture Suphot Phruetthiphat1 and Ong-art Phruetthiphat2* 1Phanat Nikhom Hospital, Chonburi 2Department of Orthopedic, Phramongkutklao Hospital and College of Medicine, Thailand *Corresponding author: Ong-art Phruetthiphat, Orthopedic Department, Phramongkutklao Hospital, Bangkok, Thailand ARTICLE INFO Abstract Received: Abbreviations: Published: January 10, 2020 Dynamic Hip Screws; MRI: Magnetic Resonance Imaging December 20, 2019 ACCP: American College of Chest Physician; IF: Internal Fixation; DHS: Citation: Ong-art Phruetthiphat, Suphot Phruetthiphat. Current Management in Os- Biomed J Sci & Tech Res 24(3)-2020. BJSTR. MS.ID.004063. teoporotic Hip Fracture. Introduction Preoperative Period [12] by compromised bone strength predisposing to an increased risk Osteoporosis is defined as a skeletal disorder characterized Physician should access whether patients take any anticoagu- lant or antiplatelet use and consider stopping them in elective sur- of fracture. Osteoporosis is a devastating disorder with significant gery: American College of Chest Physician (ACCP) clinical practice osteoporotic hip fracture occurring in elderly patient and this is physical, psychosocial, and financial consequences [1]. Generally, guideline recommends stopping antiplatelet drugs for a minimum mainly associated with low energy mechanism; fall from standing administration of oral or IV vitamin K is recommended if reversal of five days before elective surgery [13]. Withholding warfarin and height [2-5]. The incidence of osteoporotic fracture has projected to of the anticoagulant effects of warfarin to permit earlier surgery is increase in worldwide [6-8] and they are associated with morbidity deemed appropriate (recommendation B; evidence level 1++ and is really important and it should be done by multidisciplinary team and mortality [9-11].
    [Show full text]
  • Spine Fracture Prevalence in US Women and Men Aged 40 Years and Older: Results from NHANES 2013-2014
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Osteoporos Manuscript Author Int. Author manuscript; Manuscript Author available in PMC 2020 August 12. Published in final edited form as: Osteoporos Int. 2017 June ; 28(6): 1857–1866. doi:10.1007/s00198-017-3948-9. Spine Fracture Prevalence in US Women and Men Aged 40 years and older: Results from NHANES 2013-2014 Felicia Cosman, MD*,Δ, Helen Hayes Hospital, West Haverstraw, NY, USA and Department of Medicine, Columbia University College of Physicians and Surgeons, NY, USA John H Krege, MD*, Eli Lilly and Company, Indianapolis, IN, USA Anne C Looker, PhD, National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA John T Schousboe, MD, PhD, HealthPartners Institute and Park Nicollet Clinic, HealthPartners, Minneapolis, MN 55416, USA Bo Fan, MD, Department of Radiology, University of California, San Francisco, CA, USA Neda Sarafrazi Isfahani, PhD, National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA John A Shepherd, MD, Department of Radiology, University of California, San Francisco, CA, USA Kelly D Krohn, MD, Eli Lilly and Company, Indianapolis, IN, USA Peter Steiger, PhD, Parexel International, Waltham, MA USA Kevin E Wilson, PhD, Hologic, Inc., Marlborough, MA, USA Harry K Genant, MD Department of Radiology, University of California, San Francisco, CA, USA ΔCorrespondence: Felicia Cosman, MD. ([email protected]). *Contributed equally Author contributions FC, JHK, and ACL contributed to the design of the study, interpretation of the findings, primary drafting of the manuscript and manuscript editing. JTS and KEW contributed to study design, interpretation of the findings, and manuscript editing.
    [Show full text]
  • Distribution of Vertebral Fractures Varies Among Patients According to Hip Fracture Type
    Osteoporos Int (2015) 26:885–890 DOI 10.1007/s00198-014-2887-y ORIGINAL ARTICLE Distribution of vertebral fractures varies among patients according to hip fracture type J. Watt & L. Cox & R. G. Crilly Received: 19 March 2014 /Accepted: 3 September 2014 /Published online: 19 September 2014 # International Osteoporosis Foundation and National Osteoporosis Foundation 2014 Abstract patients with intertrochanteric fractures and those with ver- Summary This study explored the distribution of vertebral tebral fractures alone, respectively, and they were more likely fractures in hip fracture patients. Unlike patients with to have only one vertebral fracture (15 vs. 3, p<0.001; 15 vs. intertrochanteric fractures, those with subcapital fractures 2, p<0.001). The number of vertebral fractures from T11 to were less likely to have vertebral fractures in the T4-T10 L4 and at the T12-L1 peak did not differ among the groups. region of the spine. The dissimilar distribution of vertebral The numbers of fractures at each vertebral level was signif- fractures among patients with intertrochanteric and subcapital icantly correlated only between those with intertrochanteric fractures may indicate different underlying etiologies. fractures and those with vertebral fractures alone (r=0.65, Introduction There are two main types of hip fractures: p=0.009). intertrochanteric and subcapital. Both types can have associat- Conclusion The distribution of vertebral fractures among ed vertebral fractures. In this study, we explored the distribu- patients with subcapital fractures differed from the other tion of vertebral fractures in the two hip fracture populations. fracture groups, which may indicate that subcapital frac- Methods This was a retrospective analysis of a convenience tures and some lumbar fractures have a different under- sample of 120 patients: 40 with subcapital fractures and lying etiology than intertrochanteric fractures and tho- vertebral fractures, 40 with intertrochanteric fractures and racic (T4-T10) fractures.
    [Show full text]
  • High Risk of Hip and Spinal Fractures After Distal Radius Fracture: a Longitudinal Follow-Up Study Using a National Sample Cohort
    International Journal of Environmental Research and Public Health Article High Risk of Hip and Spinal Fractures after Distal Radius Fracture: A Longitudinal Follow-Up Study Using a National Sample Cohort Hyo-Geun Choi 1,2 , Doo-Sup Kim 3 , Bumseok Lee 3 , Hyun Youk 4,5 and Jung-Woo Lee 3,5,* 1 Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang 14068, Korea; [email protected] 2 Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Korea 3 Department of Orthopaedic Surgery, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; [email protected] (D.-S.K.); [email protected] (B.L.) 4 Department of Emergency Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; [email protected] 5 Bigdata Platform Business Group, Wonju Yonsei Medical Center, Yonsei University, Wonju 26426, Korea * Correspondence: [email protected]; Tel.: +82-33-741-0114 Abstract: The purpose of the present study was to estimate the risk of hip and spinal fracture after distal radius fracture. Data from the Korean National Health Insurance Service—National Sample Cohort were collected between 2002 and 2013. A total of 8013 distal radius fracture participants who were 50 years of age or older were selected. The distal radius fracture participants were matched for age, sex, income, region of residence, and past medical history in a 1:4 ratio with control participants. In the subgroup analysis, participants were stratified according to age group (50–59, 60–69, or ≥70 years) and sex (male or female). Distal radius fracture patients had a 1.51-fold and 1.40-fold Citation: Choi, H.-G.; Kim, D.-S.; Lee, B.; Youk, H.; Lee, J.-W.
    [Show full text]
  • Commonly Missed Orthopedic Injuries
    Commonly Missed Orthopedic Injuries Holly Adams, PA-C Galveston-Texas City VA Outpatient Clinic Missed Orthopedic Injuries • Overlooking orthopedic injuries is a leading cause of medical malpractice claims out of the ED. • Am J Emergency Med 1996. 14(4):341-5. Karcz et al, 1996. • Massachusetts Joint Underwriters Association: Missed fractures comprised 20% (during1980-1987) and 10% (1988-1990) of malpractice claims. • Fractures are 2nd in claim amount and number of cases established against ED physicians. Radiographics Commonly Missed • Wei (Taipei, Acta Radiol 2006) identified specific regions of misinterpretation: • Foot 7.6% 18/238 • Knee 6.3% 14/224 • Elbow 6.0% 14/234 • Hand 5.4% 10/185 • Wrist 4.1% 25/606 • Hip 3.9% 20/512 • Ankle 2.8% 8/282 • Shoulder 1.9% 5/266 • Tibia/fibula 0.4% 1/226 • Total 3.7% 115/3081 Pitfalls of ER X-Rays • Incorrect interpretation (interpretation errors) • Inadequate (suboptimal) images • Over‐reliance on radiography • Inadequate clinical examination Fractures are a Clinical Diagnosis • 1) Mechanism of injury • 2) Findings on physical examination • 3) Age of the patient. • Radiography confirms the diagnosis and provides anatomical detail. • Fractures can be present without radiographic abnormality. Fractures are a Clinical Diagnosis • If a fracture is clinically suspected • but not radiographically apparent, treat the patient as though a fracture were present with • adequate immobilization and follow‐up (e.g., scaphoid fracture, femoral neck fracture). Fractures are a Clinical Diagnosis • Soft tissue injuries may be more significant that the skeletal injury (ligaments, articular cartilage, neurovascular injuries). • Diagnosis by physical exam or imaging studies: MRI, angiography, arthroscopy, stress views.
    [Show full text]