The Development of a Probabilistic Model for Tholin Aggregation in Titan’S Atmosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Titan and the Moons of Saturn Telesto Titan
The Icy Moons and the Extended Habitable Zone Europa Interior Models Other Types of Habitable Zones Water requires heat and pressure to remain stable as a liquid Extended Habitable Zones • You do not need sunlight. • You do need liquid water • You do need an energy source. Saturn and its Satellites • Saturn is nearly twice as far from the Sun as Jupiter • Saturn gets ~30% of Jupiter’s sunlight: It is commensurately colder Prometheus • Saturn has 82 known satellites (plus the rings) • 7 major • 27 regular • 4 Trojan • 55 irregular • Others in rings Titan • Titan is nearly as large as Ganymede Titan and the Moons of Saturn Telesto Titan Prometheus Dione Titan Janus Pandora Enceladus Mimas Rhea Pan • . • . Titan The second-largest moon in the Solar System The only moon with a substantial atmosphere 90% N2 + CH4, Ar, C2H6, C3H8, C2H2, HCN, CO2 Equilibrium Temperatures 2 1/4 Recall that TEQ ~ (L*/d ) Planet Distance (au) TEQ (K) Mercury 0.38 400 Venus 0.72 291 Earth 1.00 247 Mars 1.52 200 Jupiter 5.20 108 Saturn 9.53 80 Uranus 19.2 56 Neptune 30.1 45 The Atmosphere of Titan Pressure: 1.5 bars Temperature: 95 K Condensation sequence: • Jovian Moons: H2O ice • Saturnian Moons: NH3, CH4 2NH3 + sunlight è N2 + 3H2 CH4 + sunlight è CH, CH2 Implications of Methane Free CH4 requires replenishment • Liquid methane on the surface? Hazy atmosphere/clouds may suggest methane/ ethane precipitation. The freezing points of CH4 and C2H6 are 91 and 92K, respectively. (Titan has a mean temperature of 95K) (Liquid natural gas anyone?) This atmosphere may resemble the primordial terrestrial atmosphere. -
Phd Projects at the Institute of Origins
PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................ -
The Lakes and Seas of Titan • Explore Related Articles • Search Keywords Alexander G
EA44CH04-Hayes ARI 17 May 2016 14:59 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations The Lakes and Seas of Titan • Explore related articles • Search keywords Alexander G. Hayes Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Earth Planet. Sci. 2016. 44:57–83 Keywords First published online as a Review in Advance on Cassini, Saturn, icy satellites, hydrology, hydrocarbons, climate April 27, 2016 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Analogous to Earth’s water cycle, Titan’s methane-based hydrologic cycle This article’s doi: supports standing bodies of liquid and drives processes that result in common 10.1146/annurev-earth-060115-012247 Annu. Rev. Earth Planet. Sci. 2016.44:57-83. Downloaded from annualreviews.org morphologic features including dunes, channels, lakes, and seas. Like lakes Access provided by University of Chicago Libraries on 03/07/17. For personal use only. Copyright c 2016 by Annual Reviews. on Earth and early Mars, Titan’s lakes and seas preserve a record of its All rights reserved climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan’s surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. -
Carl Sagan 1934–1996
Carl Sagan 1934–1996 A Biographical Memoir by David Morrison ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. CARL SAGAN November 9, 1934–December 20, 1996 Awarded 1994 NAS Pubic Welfare Medal Carl Edward Sagan was a founder of the modern disci- plines of planetary science and exobiology (which studies the potential habitability of extraterrestrial environments for living things), and he was a brilliant educator who was able to inspire public interest in science. A visionary and a committed defender of rational scientific thinking, he transcended the usual categories of academia to become one of the world’s best-known scientists and a true celebrity. NASA Photo Courtesy of Sagan was propelled in his careers by a wealth of talent, By David Morrison a large share of good luck, and an intensely focused drive to succeed. His lifelong quests were to understand our plane- tary system, to search for life beyond Earth, and to communicate the thrill of scientific discovery to others. As an advisor to the National Aeronautics and Space Administration (NASA) and a member of the science teams for the Mariner, Viking, Voyager, and Galileo missions, he was a major player in the scientific exploration of the solar system. He was also a highly popular teacher, but his influence reached far beyond the classroom through his vivid popular writing and his mastery of the medium of television. The early years Born in 1934, Sagan grew up in a workingclass Jewish neighborhood of Brooklyn, New York, and attended public schools there and in Rahway, New Jersey. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
Isoprene Rule Revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, Hormones and Life: Isoprene Rule Revisited
242 2 Journal of S G Hillier and R Lathe Isoprene rule revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, hormones and life: isoprene rule revisited Stephen G Hillier1 and Richard Lathe2 1Medical Research Council Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK 2Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK Correspondence should be addressed to S G Hillier or R Lathe: [email protected] or [email protected] Abstract The year 2019 marks the 80th anniversary of the 1939 Nobel Prize in Chemistry awarded Key Words to Leopold Ruzicka (1887–1976) for work on higher terpene molecular structures, including f isoprene the first chemical synthesis of male sex hormones. Arguably his crowning achievement f terpene was the ‘biogenetic isoprene rule’, which helped to unravel the complexities of terpenoid f steroid biosynthesis. The rule declares terpenoids to be enzymatically cyclized products of f evolution substrate alkene chains containing a characteristic number of linear, head-to-tail f great oxidation event condensed, C5 isoprene units. The number of repeat isoprene units dictates the type of f Ruzicka terpene produced (i.e., 2, monoterpene; 3, sesquiterpene; 4, diterpene, etc.). In the case of triterpenes, six C5 isoprene units combine into C30 squalene, which is cyclized into one of the signature carbon skeletons from which myriad downstream triterpenoid structures are derived, including sterols and steroids. Ruzicka also had a keen interest in the origin of life, but the pivotal role of terpenoids has generally been overshadowed by nucleobases, amino acids, and sugars. -
The Origin of Titan's Atmosphere: Some Recent Advances
The origin of Titan’s atmosphere: some recent advances By Tobias Owen1 & H. B. Niemann2 1University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 2Laboratory for Atmospheres, Goddard Space Fight Center, Greenbelt, MD 20771, USA It is possible to make a consistent story for the origin of Titan’s atmosphere starting with the birth of Titan in the Saturn subnebula. If we use comet nuclei as a model, Titan’s nitrogen and methane could easily have been delivered by the ice that makes up ∼50% of its mass. If Titan’s atmospheric hydrogen is derived from that ice, it is possible that Titan and comet nuclei are in fact made of the same protosolar ice. The noble gas abundances are consistent with relative abundances found in the atmospheres of Mars and Earth, the sun, and the meteorites. Keywords: Origin, atmosphere, composition, noble gases, deuterium 1. Introduction In this note, we will assume that Titan originated in Saturn’s subnebula as a result of the accretion of icy planetesimals: particles and larger lumps made of ice and rock. Alibert & Mousis (2007) reached this same point of view using an evolutionary, turbulent model of Saturn’s subnebula. They found that planetesimals made in the solar nebula according to their model led to a huge overabundance of CO on Titan. We obviously have no direct measurements of the composition of these planetes- imals. We can use comets as a guide, always remembering that comets formed in the solar nebula where conditions must have been different from those in Saturn’s subnebula, e.g., much colder. -
Hydrocarbon Lakes on Titan
Icarus 186 (2007) 385–394 www.elsevier.com/locate/icarus Hydrocarbon lakes on Titan Giuseppe Mitri a,∗,AdamP.Showmana, Jonathan I. Lunine a,b, Ralph D. Lorenz a,c a Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721-0092, USA b Istituto di Fisica dello Spazio Interplanetario INAF-IFSI, Via del Fosso del Cavaliere, 00133 Rome, Italy c Now at Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA Received 9 March 2006; revised 6 September 2006 Available online 7 November 2006 Abstract The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765–778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779–784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10–100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724–727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970–974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. -
The Exploration of Titan with an Orbiter and a Lake Probe
Planetary and Space Science ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss The exploration of Titan with an orbiter and a lake probe Giuseppe Mitri a,n, Athena Coustenis b, Gilbert Fanchini c, Alex G. Hayes d, Luciano Iess e, Krishan Khurana f, Jean-Pierre Lebreton g, Rosaly M. Lopes h, Ralph D. Lorenz i, Rachele Meriggiola e, Maria Luisa Moriconi j, Roberto Orosei k, Christophe Sotin h, Ellen Stofan l, Gabriel Tobie a,m, Tetsuya Tokano n, Federico Tosi o a Université de Nantes, LPGNantes, UMR 6112, 2 rue de la Houssinière, F-44322 Nantes, France b Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC University Paris 06, University Paris-Diderot, Meudon, France c Smart Structures Solutions S.r.l., Rome, Italy d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, United States e Dipartimento di Ingegneria Meccanica e Aerospaziale, Università La Sapienza, 00184 Rome, Italy f Institute of Geophysics and Planetary Physics, Department of Earth and Space Sciences, Los Angeles, CA, United States g LPC2E-CNRS & LESIA-Obs., Paris, France h Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States i Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, United States j Istituto di Scienze dell‘Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy k Istituto di Radioastronomia (IRA), Istituto Nazionale -
Detection of Chemical Species in Titan's Atmosphere Using High
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO FÍSICA Detection of Chemical Species in Titan’s Atmosphere using High-Resolution Spectroscopy José Luís Fernandes Ribeiro Mestrado em Física Especialização em Astrofísica e Cosmologia Dissertação orientada por: Doutor Pedro Machado 2019 Acknowledgments This master’s thesis would not be possible without the support of my parents, Maria de F´atimaPereira Fernandes Ribeiro and Lu´ısCarlos Pereira Ribeiro, who I would like to thank for believing in me, encouraging me and allowing me to embark on this journey of knowledge and discovery. They made the person that I am today. I would like to thank all my friends and colleagues who accompanied me all these years for the great moments and new experiences that happened trough these years of university. They contributed a lot to my life and for that I am truly grateful. I just hope that I contributed to theirs as well. I also would like to thank John Pritchard from ESO Operations Support for helping me getting the EsoReflex UVES pipeline working on my computer, without him we would probably wouldn’t have the Titan spectra reduced by now. And I also like to thank Doctor Santiago P´erez-Hoyos for his availability to teach our planetary sciences group how to use the NEMESIS Radiative Transfer model and Doctor Th´er`ese Encrenaz for providing the ISO Saturn and Jupiter data. I would like to give a special thank you to Jo˜aoDias and Constan¸caFreire, for their support and help during this work. Lastly, and surely not the least, I would like to thank my supervisor Pedro Machado for showing me how to be a scientist and how to do scientific work. -
Regional Geomorphology and History of Titan's Xanadu Province
Icarus 211 (2011) 672–685 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Regional geomorphology and history of Titan’s Xanadu province J. Radebaugh a,, R.D. Lorenz b, S.D. Wall c, R.L. Kirk d, C.A. Wood e, J.I. Lunine f, E.R. Stofan g, R.M.C. Lopes c, P. Valora a, T.G. Farr c, A. Hayes h, B. Stiles c, G. Mitri c, H. Zebker i, M. Janssen c, L. Wye i, A. LeGall c, K.L. Mitchell c, F. Paganelli g, R.D. West c, E.L. Schaller j, The Cassini Radar Team a Department of Geological Sciences, Brigham Young University, S-389 ESC Provo, UT 84602, United States b Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, United States c Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, United States d US Geological Survey, Branch of Astrogeology, Flagstaff, AZ 86001, United States e Wheeling Jesuit University, Wheeling, WV 26003, United States f Department of Physics, University of Rome ‘‘Tor Vergata”, Rome 00133, Italy g Proxemy Research, P.O. Box 338, Rectortown, VA 20140, USA h Department of Geological Sciences, California Institute of Technology, Pasadena, CA 91125, USA i Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA j Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA article info abstract Article history: Titan’s enigmatic Xanadu province has been seen in some detail with instruments from the Cassini space- Received 20 March 2009 craft. -
Presentation
IRENA MAMAJANOV FROM MESSY CHEMISTRY TO THE ORIGINS OF LIFE Habitability: Producing Conditions Conducive to Life LPI “First Billion Years” Conference Series September 9 2019 PLANETARY HABITABILITY AS PERCEIVED BY A CHEMIST WHAT IS HABITABILITY ANYWAY? Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and sustain life. EARTH-CENTRIC? DEFINITION OF LIFE LIFE IS A SELF-SUSTAINING SYSTEM CAPABLE OF DARWINIAN EVOLUTION NASA Working Definition HOW WE STUDY ORIGINS OF LIFE TWO APPROACHES IN THE BROADEST SENSE ▸ More Earth biology-centric ▸ Prebiotic synthesis of biological building blocks ▸ Setting biological processes in abiotic environments ▸ Evolution of biological structures ▸ More open-ended: Building a chemical system capable of Darwinian Evolution ▸ Selectivity ▸ Replication ▸ Heredity MORE EARTH BIOLOGY-CENTRIC: UNSATISFYING? TV PARADOX ? ? “MORE OPEN ENDED” APPROACH ▸ Looking at systems level processes. MESSY CHEMISTRY ▸ “Systems Chemistry” usually = small defined networks ▸ “Messy Chemistry” = the network chemistry of large, “intractable”, prebiotically plausible systems. ▸ Sloppy biological processes ▸ Processes resembling biological but inefficient Small fraction of the Organic Chemistry M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop, Parallel optimization of synthetic pathways within the network of organic chemistry. Angew. Network (~0.001%). Chem. Int. Ed. 51, 7928-7932 (2012). EVOLUTION OF THE CHEMOSPHERE AND BIOCHEMICAL NETWORKS Biomimetic Systems Systems approximating biological fUnction • Protoenzymes • Protocells Open-Ended Systems Systems having no predetermined limit or boundary • Autocatalytic systems M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop (2012) Angew. Chem. Int. Ed. 51:7928-7932 Small fraction of the Organic Chemistry Network (~0.001%).