Empirical Study on the Efficiency of an LPG-Supplied Range Extender For

Total Page:16

File Type:pdf, Size:1020Kb

Empirical Study on the Efficiency of an LPG-Supplied Range Extender For energies Article Empirical Study on the Efficiency of an LPG-Supplied Range Extender for Electric Vehicles Jakub Lasocki * , Artur Kopczy ´nski , Paweł Krawczyk and Paweł Roszczyk Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland * Correspondence: [email protected] Received: 4 August 2019; Accepted: 11 September 2019; Published: 13 September 2019 Abstract: A range extender is an auxiliary power unit, usually consisting of an internal combustion engine and an electric generator, which is used to charge a battery of an electric vehicle in order to increase its range. This paper considers a range extender supplied with liquefied petroleum gas (LPG). The aim is to provide detailed data on thermal efficiency, brake specific fuel consumption (BSFC), and unit emission of carbon dioxide (CO2) in a broad spectrum of range extender operating conditions defined by rotational speed and torque. The experimental investigation has been conducted using a laboratory test stand equipped with an energy dissipation system of adjustable resistance. Measurement results, including fuel flow rate, were processed using custom algorithm for generating maps, i.e., two-dimensional dependencies of the considered parameters on the rotational speed and torque. The maps obtained for LPG supply were compared with those for gasoline supply. The results demonstrated feasibility of LPG-supplied range extender. Its BSFC and thermal efficiency were at a comparable level to those obtained for gasoline supply, but with less CO2 emission. The empirical data collected has been adopted in the simulation of extended-range electric vehicle in a driving cycle, showing the potential of utilizing the results of this study. Keywords: range extender; extended-range electric vehicle; range extended electric vehicle; thermal efficiency; brake specific fuel consumption; BSFC; carbon dioxide emission; CO2 emission; LPG 1. Introduction The number of electric vehicles (EVs) worldwide is growing rapidly and their future development prospects are excellent [1]. Vehicle electrification is the way forward for the automotive industry looking to address two main environmental challenges of road transportation: air pollution and depletion of crude oil reserves [2]. A major concern is air quality degradation in urban areas and its implications on human health [3]. The most effective solution that towns and cities can take to counteract this issue is the introduction of clean air (zero/low emission) zones. This promotes the use of battery-electric vehicles (BEVs) that do not produce exhaust emissions, unlike conventional vehicles with internal combustion engines (ICEs) [4]. Other advantages of BEVs, including high efficiency of the powertrain and recuperative braking [5] or good prospects for the introduction of automatic steering systems [6,7], make them become competitive, especially for intraurban, short-distance applications such as commercial fleets or commuter vehicles [8]. However, BEVs are unlikely to substitute for ICE-based vehicles in long-distance applications unless a major breakthrough in battery technology is achieved. Due to high cost and limited capacity of currently used batteries, to store energy to provide satisfactory driving range for BEVs is not always possible [1]. The importance of providing adequate driving range to BEVs users has led to the development of extended range electric vehicles (EREVs), which combine an electric powertrain with an ICE [9,10] (Figure1). Their principle of operation is same as that of a standard BEVs, with the only di fference Energies 2019, 12, 3528; doi:10.3390/en12183528 www.mdpi.com/journal/energies Energies 2019, 12, 3528 2 of 23 Energies 2019, 12, x FOR PEER REVIEW 2 of 25 being thatthat anan additionaladditional ICE ICE acts acts as as an an on-board on-board generator generator (range (range extender) extender) to recharge to recharge the batterythe battery [11]. [11].EREVs EREVs operate operate exclusively exclusively as BEVs as BEVs when when battery battery energy energy is available is available and and have have full full performance performance in inelectric electric mode mode (e.g., (e.g., top top speed, speed, acceleration acceleration capability) capability) [12 [12].]. This This is is possible possible owingowing toto EREV’sEREV’s electric propulsion systemsystem andand batterybattery sized sized in in such such a a way way that that the the ICE ICE is is not not required required for for vehicle vehicle operation operation as aslong long as batteryas battery energy energy is available is available [12]. [12]. It is It therefore is therefore preferable preferable to move to move the vehicle the vehicle with thewith use the of use an ofelectric an electric motor motor only, i.e.,only, in i.e., "zero in emission""zero emission" driving driving mode, mode, but at but the sameat the time,same thetime, user the is user not afraidis not afraidof running of running out of batteryout of battery energy, energy, and so calledand so “range called anxiety”“range anxiety” (the term (the was term introduced was introduced in the late in 1990sthe late [13 1990s]) is alleviated. [13]) is alleviated. REX EV FSS BAT ICE MC EM FG CCU G Figure 1. Schematic diagram of extended range electricelectric vehicle: REX—range extender, EV—electric vehicle, FSS—fuel supply system, ICE—internal combustion combustion engine, engine, G—generator, G—generator, BAT—battery, BAT—battery, CCU—central controlcontrol unit, unit, MC—motor MC—motor controller, controller, EM—electric EM—electric motor, motor, FG—final FG—final gear. gear. Solid Solid lines marklines mechanical connections and dashed lines mark electrical connections. mark mechanical connections and dashed lines mark electrical connections. Despite their practicality, EREVs are not an ideal solution because the use of an onboard ICE to Despite their practicality, EREVs are not an ideal solution because the use of an onboard ICE to ensure sufficient range of the vehicle results in emission of pollutants. Recently, it has been proposed ensure sufficient range of the vehicle results in emission of pollutants. Recently, it has been proposed to limit this emission by supplying range extenders with alternative fuels [9,11,14,15]. While there to limit this emission by supplying range extenders with alternative fuels [9,11,14,15]. While there are are many gaseous and liquid fuels to consider [16], the use of liquified petroleum gas (LPG) and its many gaseous and liquid fuels to consider [16], the use of liquified petroleum gas (LPG) and its renewable version, BioLPG, are considered as currently viable options [11,17,18]. They offer not only renewable version, BioLPG, are considered as currently viable options [11,17,18]. They offer not only significant possibility to limit emission of harmful substances, but also good cost effectiveness over significant possibility to limit emission of harmful substances, but also good cost effectiveness over existing range extension technologies utilizing gasoline and diesel engines [11,19]. However, due to existing range extension technologies utilizing gasoline and diesel engines [11,19]. However, due to the early phase of development of this solution, range extenders supplied with LPG have not yet been the early phase of development of this solution, range extenders supplied with LPG have not yet been sufficiently tested and there is a very small number of scientific publications devoted to this topic. sufficiently tested and there is a very small number of scientific publications devoted to this topic. Recently it has been proved that EREVs can be successfully implemented in commercial Recently it has been proved that EREVs can be successfully implemented in commercial applications. Several car manufacturers offer EREVs for sale, e.g., BMW i3-REX, Chevrolet VOLT/Opel applications. Several car manufacturers offer EREVs for sale, e.g., BMW i3-REX, Chevrolet Ampera, other companies supporting the automotive industry, e.g., AVL, KSPG, Lotus Engineering, VOLT/Opel Ampera, other companies supporting the automotive industry, e.g., AVL, KSPG, Lotus MAHLE, have presented their own range extender concepts as modules for use in vehicles [20]. Most of Engineering, MAHLE, have presented their own range extender concepts as modules for use in them make use of spark ignition ICEs. BMW converted small-displacement two-cylinder ICE used in vehicles [20]. Most of them make use of spark ignition ICEs. BMW converted small-displacement the BMW C650 GT scooter [21] to be offered as an option for the BMW i3, initially designed as a pure two-cylinder ICE used in the BMW C650 GT scooter [21] to be offered as an option for the BMW i3, BEV. General Motors has chosen a different way by designing the Voltec powertrain [22,23], formerly initially designed as a pure BEV. General Motors has chosen a different way by designing the Voltec known as E-Flex, which includes an all-new four-cylinder Ecotec ICE [24], exclusively for Chevrolet powertrain [22,23], formerly known as E-Flex, which includes an all-new four-cylinder Ecotec ICE Volt/Opel Ampera. Voltec architecture is similar to a plug-in hybrid (PHEV), but is capable of operation [24], exclusively for Chevrolet Volt/Opel Ampera. Voltec architecture is similar to a plug-in hybrid on battery power alone up to 85 km, depending on the driving style, ambient temperature conditions, (PHEV), but is capable of operation on battery power alone up to 85 km, depending on the driving and climate comfort
Recommended publications
  • 9914 the Manufacturability of the Rotapower® Engine
    9914 The Manufacturability of the Rotapower® Engine Paul S. Moller, Ph.D. Freedom Motors Freedom Motors 1855 N 1st St., Suite B Dixon, CA 95620 www.freedom-motors.com All rights reserved. © 2018. No part of this publication may be reproduc ed, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, and recording or otherwise without the prior written permission of the authors. 9914 The Manufacturability of the Rotapower® Engine Paul S. Moller, Ph.D. Freedom Motors ABSTRACT introduced their rotary powered Evinrude RC-35-Q and Johnson Phantom snowmobiles. There are many elements of the charge cooled Wankel type rotary engine that make it inexpensive OMC also investigated liquid cooled housing marine to produce. OMC was able to show that they could models. OMC’s four rotor outboards raced six produce this type of engine at a cost competitive times in the summer and fall of 1973, winning every with their carbureted two-stroke engines. race in U class (unlimited). At the Galveston Speed Classic, they placed 1 st, 2nd and 3rd, lapping the THE PRODUCTION CHARGE COOLED WANKEL entire field three times (a fourth OMC boat rolled). WAS FIRST INTRODUCED AS A POTENTIALLY It was rumored that they once made a straightaway CLEAN, LOW COST, POWERFUL REPLACEMENT pass at 165 mph. FOR TW O-STROKES. THE CHARGE-COOLED ROTOR WANKEL TYPE In the late 60’s Outboard Marine Corporation ENGINE HAS A LOW PART COUNT (OMC) recognized the market value of an advanced, more powerful engine. This interest was When choosing an engine for a particular intensified by a growing concern that emission application or comparing the part count between issues would necessitate a clean burning, engines, the required power and torque environmentally friendly powerplant.
    [Show full text]
  • Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine
    Energies 2015, 8, 8086-8109; doi:10.3390/en8088086 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine Yan Zhang, Zhengxing Zuo and Jinxiang Liu * School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; E-Mails: [email protected] (Y.Z.); [email protected] (Z.Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-10-6891-1392. Academic Editors: Paul Stewart and Chris Bingham Received: 19 March 2015 / Accepted: 17 July 2015 / Published: 4 August 2015 Abstract: The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1) improve the understanding of combustion process, and (2) quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.
    [Show full text]
  • An Experimental Study of a Hydrogen-Enriched Ethanol Fueled Wankel Rotary Engine at Ultra Lean and Full Load Conditions ⇑ F
    Energy Conversion and Management 123 (2016) 174–184 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman An experimental study of a hydrogen-enriched ethanol fueled Wankel rotary engine at ultra lean and full load conditions ⇑ F. Amrouche a, , P.A. Erickson b, S. Varnhagen b, J.W. Park b a Centre de Développement des Énergies Renouvelables, CDER, 16340 Algiers, Algeria b Mechanical and Aerospace Engineering Department, UC Davis, CA 95616, USA article info abstract Article history: In this paper, the effect of hydrogen addition to ethanol in a monorotor Wankel engine at wide open Received 29 March 2016 throttle position and in an ultra-lean operating regime was experimentally investigated. For this aim, Received in revised form 20 May 2016 variation of hydrogen enrichment levels on the ethanol engine performance and emissions were consid- Accepted 12 June 2016 ered. Experiments were carried out under a constant engine speed of 3000 rpm and fixed spark timing of Available online 18 June 2016 15 °BTDC. The test results showed that hydrogen enrichment improved the combustion process through shortening of the flame development and flame propagation periods and reducing the cyclic variation. Keywords: Furthermore, the reduction of burn duration with the increase of hydrogen fraction enhances the thermal Wankel rotary engine efficiency, reducing the brake-specific energy consumption, as well as reducing the unburned hydrocar- Hydrogen enriched ethanol Ultra-lean burn bons emissions of the Wankel engine. Engine economy Ó 2016 Elsevier Ltd. All rights reserved. Unburned hydrocarbons emissions 1. Introduction new generation of rotary engines.
    [Show full text]
  • Reciprocating Vs. Wankel Engine
    Reciprocating Engine VS Wankel Engine Fadi Abas Wayne Gyorgak Mark Bowling August Wright The Otto cycle is defined as an idealized Thermodynamic Cycle that describes the functioning of a typical spark ignition piston engine. It is the most common cycle found in automobile engines. The Wankel Engine - Designed in 1951 in Germany by Hanns Dieter Paschke based on the design of Felix Wankel - In the design of the Wankel engine the four strokes of an Otto cycle happen around a three side symmetric Reciprocating Engine rotor. -The reciprocating engine was first developed during the - The theoretical shape of the rotor between the fixed 18th century in Europe as an atmospheric then later a steam corners is the result of a minimization of the volume of engine. the geometric combustion chamber and a maximization -The reciprocating engine, or more commonly known as a of the compression ratio. piston engine, is a heat engine that is designed to reciprocate - While a four-stroke piston engine completes one pressure from the horizontally moving pistons into the rotating combustion stroke per cylinder for every two rotations of motion of the crankshaft. the crankshaft each combustion chamber in the Wankel -Today the most common reciprocating engine is the generates one combustion stroke per driveshaft rotation, internal combustion engine. These engines run on the i.e. one power stroke per rotor orbital revolution and combustion of diesel, LPG, CNG, and petrol and are most three power strokes per rotor rotation. Thus, the power commonly used to power motor vehicles and engine power output of a Wankel engine is generally higher than that plants.
    [Show full text]
  • Signature Redacted Signature of Author: Delartrent of Mechanical Engineering August 1987 Signature Redacted Certified By: Prof
    HEAT TRANSFER AND PERFORMANCE CALCULATIONS IN A ROTARY ENGINE by RAYMOND ANTHONY STANTEN Bachelor of Science Mechanical Engineering Rensselaer Polytechnic Institute (1985) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 1987 Copyright Massachusetts Institute of Technology, 1987 Signature redacted Signature of Author: Delartrent of Mechanical Engineering August 1987 Signature redacted Certified by: Prof. John B. Heywood, Thksis Supervisor Dept. of Mechanical Engineering Signature redacted Accepted by: Prof. Ain A. Sonin Ch ' . pt. of Mechanical Engineering ArchiveS -2- HEAT TRANSFER AND PERFORMANCE CALCULATIONS IN A ROTARY ENGINE by RAYMOND ANTHONY STANTEN Submitted to the Department of Mechanical Engineering on August 25, 1987 in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering ABSTRACT The Wankel stratified-charge combustion engine is a promising future powerplant for general aviation. The advantages of the engine include low weight, high specific power density and multifuel capability without a loss in performance. Additional gains in performance may be possible if ceramics are used to insulate the rotary engine housing, thereby increasing engine wall temperatures and reducing heat transfer losses. To evaluate the feasibility of this insulation and its effect on performance, it was necessary to determine the local temperature and heat transfer profiles at specific locations within the engine. With this boundary condition information, a finite element calculation could be used to determine the temperature fluctuation and penetration depth. This data can then be used to calculate thermal stresses which are important in ceramic applications due to the high thermal resistivity and brittleness of ceramics relative to steel.
    [Show full text]
  • SAE 2014 International Powertrain, Fuels & Lubricants Meeting
    SAE 2014 International Powertrain, Fuels & Lubricants Meeting Technical Session Schedule As of 10/26/2014 07:41 pm Monday, October 20 Multi-Dimensional Engine Modeling (Part 1) Session Code: FFL120 Room Executive Room 1 Session Time: 10:30 The spectrum of papers solicited for this session reflect the truly multi-disciplinary nature of the field of Multi-Dimensional Engine Modeling. The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling. This includes advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged. Organizers - Hai-Wen Ge, Chrysler Corporation LLC; Martin Tuner, Lund Univ. Chairpersons - Martin Tuner, Lund University Time Paper No. Title 10:30 a.m. 2014-01-2574 Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts Tenghua Shieh, Kiyotaka Yamashita, Oana Nitulescu, Toyota Motor Engineering & Mfg. NA, Inc.; Satoshi Hirano, Norio Inami, Toyota Motor Corp.; Hiroshi Moritani, Toyota Central R&D Labs Inc. 11:00 a.m. 2014-01-2569 Application of Computational Fluid Dynamics to Explore the Sources of Soot Formation in a Gasoline Direct Injection Engine Fabrizio Bonatesta, Salvatore La Rocca, Edward Hopkins, Daniel Bell, Oxford Brookes Univ. 11:30 a.m. 2014-01-2566 A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion Beini Zhou, Akira Kikusato, Kusaka Jin, Yasuhiro Daisho, Waseda Univ.; Kiyotaka Sato, Hidefumi Fujimoto, Mazda Motor Corp.
    [Show full text]
  • Wankel Engine
    R -1 it ' ..^ . A SURVEY OF ROTARY TYPE INTERNAL COMBUSTION 1 ENGINES WITH PARTICULAR EMPHASIS , ON THE N.S.U.-WANKEL ENGINE \ 1 J . by , '4 HIRIYUR VEERANNA CHANDRA SHJilKA i \ B. S., Mysore University, India, 1958 1 1 \ \ •1 A MASTER ' S REPORT submitted in partial fulfillment of the ; requirements for the degree • 1 MASTER OP SCIENCE Department of Mechanical Engineering KANSAS STATE UNIVERSITY :i 1 Manhattan, Kansas 1 1966 V 1 "J Approved hy: 1 OM,. a/ Hy^^^Oa^ y Major i^ofessor .1 LP TABLE OP CONTENTS ^ ^ ^-, NOMENCLATURE iii INTRODUCTION 1 REVIEW OP LITERATURE ....',. 3 Rotary Piston Engines .... $ Rotary Cylinder Engines 11 Vane- type Engines 12 'Cat-and-mouse' Engines 13 N.S.U.-WANKEL ENGINE 1^ Optimum Shape l8 Principle of Operation 21 Engine Cycle 23 First Prototype ..... 25 COMPARISON WITH RECIPROCATING ENGINE 26 Combustion 26 Port Area 26 P-V Diagram 2? Sealing System 30 Cooling 32 DESIGN OP N.S.U.-WAMEL ENGINE 32 Output 2>k- Swept Volume 35 Engine Geometry - .•' 37 CONCLUSIONS . i^o ACKNOWLEDGMENT [^1 REFERENCES |j_2 Ill NOMENCLATURE e = eccentricity G = center of gravity h = thickness ,. N = rotational speed Pme ~ inean effective pressure P = output r = pitch circle radius R = generating radius V^ = volume of the chamber i_ = compression ratio ^ = angle of obliquity P = angle described by the line passing through the point of contact of the meshing gears and the center of the cir- cular hole in the rotor, with reference to a fixed axis 9 = angle of inclination of the line joining the center of the stator and the centroid of the rotor to the x-axis ,' ..• ^ = leaning angle , INTRODUCTION The conventional reciprocating internal combustion engine suffers from several fundamental shortcomings.
    [Show full text]
  • Combustion Chamber Design Effect on the Rotary Engine Performance - a Review
    Boughou Smail et al / International Journal of Automotive Engineering Vol.11, No.4(2020) Review article 20204578 Combustion Chamber Design Effect on The Rotary Engine Performance - A Review Boughou Smail 1) AKM Mohiuddin 2) 1) International University of Rabat UIR, Renewable Energies and Advanced Materials Laboratory LERMA, Technopolis Rabat-Shore, Morocco (E-mail [email protected]) 2) International Islamic University of Malaysia IIUM, Faculty of Engineering P.O. Box 10, 50728 Kuala Lumpur, Malaysia (E-mail [email protected] ) Received on March 5 ,2020 ABSTRACT: Comparatively, this review is meant to focus on possible developments studies of the rotary engine design. The controversial engine produces a direct rotational motion. Felix Wankel derived the triangular rotor shape from complex geometry of the Reuleaux triangle. The Wankel engine simulation and prediction of its performance is still limited. The current work reviews rotary engine’s flow field inside the combustion chamber with different commercial software used. It studies different parameters effect on the performance of the engine, such as the effect of the recess sizes and the shape-factor. It is found that the engine chambers design is one of the aspects of improvement opportunities. KEY WORDS: Rotary engine; Design geometry, Shape factor; Combustion simulation. [A1] The rotary engine recently got interests for possible 1. Introduction reliability as range extenders for electric vehicles. The rotary engine is reliable to be applied for the design architecture of UAV powertrains 12,13. The small-scale reliability to unmanned aerial Although the controversial rotary engine was adopted and vehicles UAVs. Such as for aviation of RQ-7A Shadow 200 and developed by many manufacturers, it is seen that multiple Sikorsky Cypher are run with a rotary engine.
    [Show full text]
  • Computational Investigation of Rotary Engine Homogeneous
    COMPUTATIONAL INVESTIGATION OF ROTARY ENGINE HOMOGENEOUS CHARGE COMPRESSION IGNITION FEASIBILITY A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By Michael Irvin Resor B.S., Wright State University, 2012 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 9, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael Irvin Resor ENTITLED Computational Investigation of Rotary Engine Homogeneous Charge Compression Ignition Feasibility BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering. Committee of George Huang, Ph.D. Final Examination Thesis Director Haibo Dong, Ph.D. George Huang, Ph.D. Co-Advisor Chair Department of Mechanical and Materials Engineering George Huang, Ph.D. College of Engineering and Computer Science Greg Minkiewicz, Ph.D. Scott Thomas, Ph.D. Zifeng Yang, Ph.D. Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Abstract Resor, Michael Irvin. M.S. Egr., Department of Mechanical and Materials Engineering, Wright State University, 2014. Computational Investigation of Rotary Engine Homogeneous Charge Compression Ignition Feasibility. The Air Force Research Laboratory (AFRL) has been investigating the heavy fuel conversion of small scale Unmanned Aerial Vehicles (UAV). One particular platform is the Army Shadow 200, powered by a UEL Wankel rotary engine. The rotary engine historically is a proven multi-fuel capable engine when operating on spark ignition however, little research into advanced more efficient compression concepts have been investigated. A computational fluid dynamics model has been created to investigate the feasibility of a Homogeneous Charge Compression Ignition (HCCI) rotary engine.
    [Show full text]
  • Wankel Engine
    WANKEL ENGINE Wankel Engine in Deutsches Museum Munich, Germany The Wankel rotary engine is a type of internal combustion engine, invented by German engineer Felix Wankel, which uses a rotor instead of reciprocating pistons. This design promises smooth high-rpm power from a compact, lightweight engine; Criticism Wankel engines however are criticized for poor fuel efficiency and exhaust emissions. Naming Since its introduction in the NSU Motorenwerke AG (NSU) and Mazda cars of the 1960s, the engine has been commonly referred to as the rotary engine, a name which has also been applied to several completely different engine designs. Although many manufacturers licensed the design, and Mercedes-Benz used it for their C-111 concept car, only Mazda has produced Wankel engines in large numbers. As of 2005, the engine is only available in the Mazda RX-8. How it works The Wankel cycle. The "A" marks one of the three apexes of the rotor. The "B" marks the eccentric shaft, turning three times for every revolution of the rotor. In the Wankel engine, the four strokes of a typical Otto cycle engine are arranged sequentially around an oval, unlike the reciprocating motion of apiston engine. In the basic single rotor Wankel engine, a single oval (technically an epitrochoid) housing surrounds a three-sided rotor (a Reuleaux triangle) which turns and moves within the housing. The sides of the rotor seal against the sides of the housing, and the corners of the rotor seal against the inner periphery of the housing, dividing it into three combustion chambers. As the rotor turns, its motion and the shape of the housing cause each side of the rotor to get closer and farther from the wall of the housing, compressing and expanding combustion chamber similarly to the "strokes" in a reciprocating engine.
    [Show full text]
  • Exploring the Mazda Wankel Rotary As an Alternative Aircraft Engine PAUL LAMAR, EAA 171194
    Exploring the Mazda Wankel rotary as an alternative aircraft engine PAUL LAMAR, EAA 171194 Aviation headline nine years from now: Rotary-Powered Racer Bests Warbirds at Reno RENO, NV—Employing turbocharged, twin three-rotor engines, the Rotary Ranger demonstrated what a low cross section, lightweight, reliable, 1,000-horsepower en- gine can do.... kay, so it hasn't happened yet. But let me convey why such a headline isn't that 1 O outrageous. When married with the proper airframe, a rotary engine could certainly give the old L\_ Li warbirds a run for their money. So why do engine experts seldom in- clude the rotary engine when dis- cussing the merits of auto engine conversions for aircraft? Most likely, it's lack of knowledge. If I could define the criteria for a realistically "perfect" aircraft engine, I think you'd agree that the follow- ing attributes are desirable in any aviation powerplant: reliability; ro- bustness; extended time between overhauls (TBO); damage tolerance; smoothness; no shock cooling; abil- 44 FEBRUARY 2002 Perry Mick's Mazda-powered Long- It believed in the rotary engine and valve springs, camshafts, lifters, EZ features a ducted fan shroud giv- solidly understood its superior kine- pushrods, and crankshafts--espe- ing it an extra-futuristic profile. matics. Eventually, Mazda sold more cially at high rpm. The crankshaft in than two million rotary engine-pow- a piston engine, for example, is a ity to run low-cost fuel; low fuel con- ered cars. stress analyst's worst nightmare sumption; low purchase cost; high with its twisting and turning every horsepower-to-weight ratio; com- Why Rotary? which way.
    [Show full text]
  • My Internal Combustion Rotary Engine with Only Four Moving Parts
    CALIFORNIA STATE SCIENCE FAIR 2012 PROJECT SUMMARY Name(s) Project Number David A. Zarrin S0331 Project Title The Z-Engine: My Internal Combustion Rotary Engine with Only Four Moving Parts Abstract Objectives/Goals I researched internal combustion engines. Unlike traditional engines, Wankel rotary engines have few moving parts but have other problems. HYPOTHESIS: One can architect a rotary internal combustion engine that doesn't have Wankel rotary engine issues and yet, offers advantages over traditional combustion engines. GOAL: eliminate such problems through the following properties: 1) Has no more than four moving parts. 2) Resilient compression & oil seals design that don't wear out due to lateral motion of compression seal. 3) Combustion forces must be fully aligned with rotation tangential forces. 4) Combustion force must drive the main shaft at 100% duty cycle. 5) Full-cycle engine - one combustion for every cycle vs. one combustion every four cycles. 6) Each combustion must drive the main shaft nearly 300 degrees instead of 180 degrees in traditional four-stroke engines. 7) No pistons, valves, valve rods, valve springs, cam-shaft, cams, timing chain, or such moving parts. 8) Eliminate or minimize reverse motion of mechanical parts such as pistons, piston rod, valves and the Wankel core. Methods/Materials To better understand motors,I will take apart several motors (two lawnmowers a trimmer and a rototiller). Next, I will build prototypes. The first prototype with clear Plexiglas to view motion. The next prototypes will be hard steel by machining to a +/- 0.008" accuracy. I plan to use some off-the-shelf components such as sparkplugs, coil, natural gas carburetor, or fuel injector.
    [Show full text]