Hamilton, Irlannin Suurin Luonnontieteilijä

Total Page:16

File Type:pdf, Size:1020Kb

Hamilton, Irlannin Suurin Luonnontieteilijä Hamilton, Irlannin suurin luonnontieteilijä Osmo Pekonen Irlannissa on vietetty Kansainvälistä fysiikan vuotta 2005 kansallista teemaa käyttäen. Ein- steinin lisäksi on voitu muistella maan omaa suurta poikaa Sir William Rowan Hamilto- nia (1805–1865), jonka syntymästä on sopivas- ti 200 vuotta. William Rowan Hamilton syntyi Dublinissa keskiyöllä 3./4. elokuuta 1805, joten hänen syn- tymäpäivästään on kirjallisuudessa kahdenlai- sia tietoja. Kotiosoite oli 36, Dominick Street. Isä U T U H Archibald oli asianajaja ja setä James pappi. He herätti huomiota ilmoittamalla asiasta Irlannin A P A kannustivat pikku Williamia opintielle omape- kuninkaalliselle astronomille John Brinkleyl- T räisillä menetelmillä: pojan isovarpaaseen kiin- le. Tämä totesi nuoren Hamiltonin olevan suuri Ä 17 S S nitettiin naru, josta nykäisemällä hänet saatiin matemaattinen henki ja kehotti häntä tulemaan E E T E I takaisin läksyjen pariin. William oli ihmelapsi, aamuteelle milloin vain hän haluaisi. Kahdek- T jonka lahjakkuus ilmeni aluksi kielellisesti. Jo santoistavuotiaana Hamilton kirjoittautui Dub- ennen kouluikää hän oppi heprean, kreikan ja linin Trinity Collegeen, vuonna 1592 perustet- latinan alkeet. Myöhemmin seurasivat arabia, tuun kunnianarvoisaan opinahjoon, josta mo- bengali, hindi, kaldea, malaiji, persia, sanskrit net Irlannin suurmiehet ovat valmistuneet. Ha- ja syyria. Pojalle ajateltiin uraa Itä-Intian kaup- milton sai parhaat arvosanat niin humanistissa pakomppanian palveluksessa, mutta ennen pit- kuin luonnontieteellisissä aineissa. kää selvisi, että hänestä tulisi tiedemies. Kaksitoistavuotiaana William näki amerik- kalaisen päässälaskijaihmeen Zerah Colburnin Matematiikkaa vai runoutta? esityksen, joka sytytti hänessä matematiikan ki- pinän. Epänormaalin hyvät päässälaskijat ovat Hamiltonin ensimmäinen, John Brinkleyn oh- usein autisteja, ja varmaan siitä oli kysymys jaama matemaattinen tutkielma On Caustics Colburninkin tapauksessa. Myös Williamilla oli valmistui 1824. Sitä ei kuitenkaan vielä julkais- ilmiömäisen hyvä laskupää, mutta hän ei sen- tu, vaan Irlannin Kuninkaallinen Tiedeakatemia tään pärjännyt Colburnille. Nuori Hamilton kehotti tekijää pyrkimään kyseisen ongelman kohtasi ehkäpä ensimmäistä kertaa itseään suu- ratkaisussa pitemmälle. Tämä olikin hyväksi, remman mentaalisen kyvyn, mikä lienee jäänyt sillä vuonna 1826 Hamilton esitti merkittäväs- harmittamaan häntä. sä artikkelissaan Theory of Systems of Rays hyvin Kolmetoistavuotiaana Hamilton alkoi lukea yleisen karakteristisen funktion, joka mahdol- ranskalaisen ihmelapsen – aikoinaan muuten listaa monien optiikan perinteisten ongelmien Maupertuis’n mukana Lapissakin käyneen – matematisoimisen. Tulos oli suuri sensaatio. Alexis Clairaut’n kirjoittamaa algebran oppikir- Vuonna 1827 Hamilton jo valittiin sillä vä- jaa. Viidentoista vuoden iässä olivat lukulistal- lin Cloynen piispaksi nimitetyn opettajansa la Lagrange, Laplace ja Newton. Hän löysi Lap- Brinkleyn seuraajaksi Irlannin kuninkaallisena lacen taivaanmekaniikasta erään virheenkin ja astronomina. Tähän juhlavaan titteliin kuului TIETEESSÄ TAPAHTUU 8/2005 myös Trinity Collegen tähtitieteen Andrewsin säteen tunkeutuessa sopivasta suunnasta opti- oppituoli sekä virka-asunto Dunsinkin tähtitor- sesti kaksiakseliseen kiteeseen, esimerkiksi ara- nissa – ei hassumpaa kaksikymmentäyksivuo- goniittiin. Tällöin säde taittuu ontoksi valokar- tiaalle opiskelijalle, jonka lopputyö oli vielä te- tioksi. Hamilton ennusti kartiotaittumisen ma- kemättä! Näin nuoren henkilön nimitys herätti temaattisesti, ja kaksi kuukautta myöhemmin tietenkin myös arvostelua, ja totta puhuen Ha- Trinity Collegen fysiikan professori Humphrey miltonista ei kovin hyvää tähtitieteen havain- Lloyd todisti sen kokeellisesti, mikä teki Hamil- noijaa koskaan tullutkaan. Tähtitiede sai jää- tonista maailmankuulun. Koejärjestelyssä valo- dä sivuseikaksi, sillä Hamiltonin aika kului pi- kartio näkyy kirkkaana ohuena renkaana valo- kemminkin matematiikan parissa. Trinity Col- kartiota leikkaavalla tasolla. lege suhtautui kuitenkin asiaan suvaitsevaises- Vuonna 1839 Poggendorff havaitsi, että ky- ti: pääasia, että jokin pysyvä virka lahjakkaalle seinen valorengas itse asiassa muodostuu kah- nuorelle miehelle saatiin. desta renkaasta, joiden väliin jää pimeä alue. Kielellisesti lahjakas Hamilton askarteli pal- Vuonna 1905 Voigt selitti tämän ilmiön teoreet- jon myös runouden parissa. Hän osasi pitää ko- tisesti. Vuonna 1941 Raman havaitsi, että pitkil- meita juhlapuheita, joissa kernaasti siteerasi ai- lä etäisyyksillä valokartio supistuu pisteeksi. kakauden suuria runoilijoita ja lisäsi jatkoksi Belsky ja Khapalyuk mallinsivat vuonna 1978 omiakin säkeitään. Hän runoili mielellään täh- valokartion hienorakenteen matemaattisesti, titaivaasta. mutta vasta 1997 Warnick ja Arnold kehittivät Kun Hamilton teki opintomatkan Englan- numeerisen menetelmän, jolla Belskyn-Khapa- tiin, hän ystävystyi William Wordsworthin lyukin yhtälöt voidaan ratkaista. Tällöin löytyi kanssa. Tietenkin hän näytti mestarille runo- sisemmästä Poggendorffi n renkaasta vielä oma jaan ja kertoi suunnittelevansa myös kirjailijan matemaattisesti ilmenevä hienorakenteensa. uraa. Wordsworth kuitenkin totesi pelkäävän- Ei kuitenkaan ole pystytty valmistamaan niin T I sä, että kaunokirjallinen puuhastelu vieroittaisi säännöllisiä kiteitä, että tämäkin hienorakenne E T E E nuoren professorin tieteestä. Hän suositteli Ha- saataisiin kokeellisesti näkyväksi. S S Ä miltonille keskittymistä matematiikkaan, jossa Kartiotaittumista on tutkittu kohta kaksisa- 18 T tämä voisi saada aikaan suurempia asioita ih- taa vuotta, mutta kumma kyllä sille ei ole keksit- A P A miskunnan hyväksi kuin runoilijana. ty merkittävää käyttöä optisissa laitteissa. Han- H T U U Kaunosielu Hamilton ei kuitenkaan koko- noverissa toimiva yhtiö Vision Crystal Techno- naan malttanut luopua runoudesta. Hänellä oli logy AG tarjoaa Hamiltonin juhlavuoden kun- lukuisia nuoruuden ihastuksia, joille hän syy- niaksi 10 000 euron palkinnon sille, joka keksii ti sonettejaan, eivätkä ne olleet vallan huonoja. parhaan kartiotaittumisen sovelluksen. Elämänsä loppuun asti Hamilton kävi epätoi- Vuonna 1834 tutkimuksessaan On a General voista runokirjeenvaihtoa erään Catherine Dis- Method in Dynamics Hamilton esitti sittemmin neyn kanssa, johon hän oli rakastunut, vaikka Hamiltonin funktiona tunnetun suureen, jol- tästä oli tullut erään papin vaimo. la on erittäin keskeinen merkitys mekaniikas- Hamilton päätyi kuitenkin avioliittoon tähti- sa. Hän päätyi dynamiikan uuteen teoriaan so- torninsa naapurissa asuneen Helen Maria Bay- veltamalla samantapaisia metodeja, jotka aikai- lyn kanssa. He saivat kolme lasta. Hamilton ei semmin olivat johtaneet karakteristiseen funk- kuitenkaan pitänyt vaimoaan tarpeeksi älyk- tioon optiikassa. käänä. Kun Hamiltonin salarakkaansa kanssa Matemaattisiin yksityiskohtiin on tässä tur- käymä kirjeenvaihto paljastui, papinrouva Cat- ha mennä. Riittäköön todeta, että Hamiltonin herine joutui asumuseroon miehestään ja yrit- mekaniikka on monissa tilanteissa käyttökel- ti itsemurhaa, ja myös Helenin elämä synkistyi. poinen vaihtoehto aikaisemmin tunnetulle La- Hamilton teki siis runoilullaan kaksi naista on- grangen mekaniikalle. (Hamiltonin funktio on nettomiksi. itse asiassa Lagrangen funktiosta muodostettu Legendren muunnos.) Vuonna 1835 Dublinissa pidetyssä British Optiikka ja dynamiikka Association for the Advancement of Science’n kokouksessa Hamilton puhui aiheesta Algebra Optiikan ja dynamiikan töillään Hamilton saa- as the Science of Pure Time. Irlannin varakuningas vutti kansainvälisen maineen jo alle 30-vuotiaa- (”Lord Lieutenant”) aateloi hänet valtiomiekal- na. Vuonna 1832 hän julkaisi teoriansa kartio- la Trinity Collegen kirjastossa, kuuluisassa Long taittumisesta. Merkillinen ilmiö esiintyy valon- Hallissa, pidetyssä seremoniassa. Vuonna 1837 TIETEESSÄ TAPAHTUU 8/2005 i2 = j2 = k2 = ijk = -1 Hän kirjoitti kaavan heti muistikirjaansa, joka on säilynyt, ja varmemmaksi vakuudeksi kaiversi sen veitsellä myös Broughamin sillan kupeeseen. Kvaternioilla tarkoitetaan lukuja q = a + bi + cj + dk, missä a,b,c,d ovat tavallisia reaalilukuja ja kirjaimet i,j,k ”imaginaariyksikköjä”, jotka nou- dattavat em. kvaternioalgebraa. Kvaterniot an- tavat tavan muodostaa neliulotteiseen avaruu- teen kertolasku, jossa ei ole nollanjakajia. Toi- sin sanoen, jos kahden kvaternion tulo on nol- la, niin ainakin toinen tulontekijöistä on nollak- vaternio. Nollanjakajattomia kertolaskuja on olemassa vain ulottuvuuksissa 1 (reaaliluvut), 2 (kompleksiluvut), 4 (kvaterniot) ja 8 (oktoni- ot), joten kysymyksessä oli hyvin harvinaislaa- tuisen uuden algebrallisen rakenteen löytymi- nen. Kvaterniokertolasku ei ole vaihdannainen, mikä aikanaan tuntui merkilliseltä. Algebralli- sesti kyseessä on ns. vinokunta (skew fi eld). Ni- U T U H men ’kvaternio’ Hamilton keksi Apostolien te- A P A kojen jakeesta 12:4, jossa kerrotaan neljän ne- T limiehisen roomalaisen sotilasvartioston (four Ä 19 S S Hamilton valittiin Irlannin Kuninkaallisen Tie- quaternions of soldiers, Kuningas Jaakon Raama- E E T E I deakatemian puheenjohtajaksi. Hän oli myös tun käännöksen mukaan) vartioineen Herodek- T Berliinin, Pariisin, Torinon ja Yhdysvaltain tie- sen vangitsemaa Pyhää Pietaria. deakatemioiden jäsen. Aivan erityisesti Hamil- ton arvosti Pietarin keisarillisen tiedeakatemian hänelle myöntämää kirjeenvaihtajajäsenyyttä – Bloomsday ja Broomsday ottaen huomioon, että hänen maansa oli silloin sodassa Venäjää vastaan! (Siihen aikaan totises- Broughamin
Recommended publications
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • Alexis Claude Clairaut
    Alexis Claude Clairaut Born: 7 May 1713 in Paris, France Died: 17 May 1765 in Paris, France Alexis Clairaut's father, Jean-Baptiste Clairaut, taught mathematics in Paris and showed his quality by being elected to the Berlin Academy. Alexis's mother, Catherine Petit, had twenty children although only Alexis survived to adulthood. Jean-Baptiste Clairaut educated his son at home and set unbelievably high standards. Alexis used Euclid's Elements while learning to read and by the age of nine he had mastered the excellent mathematics textbook of Guisnée Application de l'algèbre à la géométrie which provided a good introduction to the differential and integral calculus as well as analytical geometry. In the following year, Clairaut went on to study de L'Hôpital's books, in particular his famous text Analyse des infiniment petits pour l'intelligence des lignes courbes. Few people have read their first paper to an academy at the age of 13, but this was the incredible achievement of Clairaut's in 1726 when he read his paper Quatre problèmes sur de nouvelles courbes to the Paris Academy. Although we have already noted that Clairaut was the only one of twenty children of his parents to reach adulthood, he did have a younger brother who, at the age of 14, read a mathematics paper to the Academy in 1730. This younger brother died in 1732 at the age of 16. Clairaut began to undertake research on double curvature curves which he completed in 1729. As a result of this work he was proposed for membership of the Paris Academy on 4 September 1729 but the king did not confirm his election until 1731.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Lagrangian Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 11
    Lagrangian mechanics - Wikipedia, the free encyclopedia Page 1 of 11 Lagrangian mechanics From Wikipedia, the free encyclopedia Lagrangian mechanics is a re-formulation of classical mechanics that combines Classical mechanics conservation of momentum with conservation of energy. It was introduced by the French mathematician Joseph-Louis Lagrange in 1788. Newton's Second Law In Lagrangian mechanics, the trajectory of a system of particles is derived by solving History of classical mechanics · the Lagrange equations in one of two forms, either the Lagrange equations of the Timeline of classical mechanics [1] first kind , which treat constraints explicitly as extra equations, often using Branches [2][3] Lagrange multipliers; or the Lagrange equations of the second kind , which Statics · Dynamics / Kinetics · Kinematics · [1] incorporate the constraints directly by judicious choice of generalized coordinates. Applied mechanics · Celestial mechanics · [4] The fundamental lemma of the calculus of variations shows that solving the Continuum mechanics · Lagrange equations is equivalent to finding the path for which the action functional is Statistical mechanics stationary, a quantity that is the integral of the Lagrangian over time. Formulations The use of generalized coordinates may considerably simplify a system's analysis. Newtonian mechanics (Vectorial For example, consider a small frictionless bead traveling in a groove. If one is tracking the bead as a particle, calculation of the motion of the bead using Newtonian mechanics) mechanics would require solving for the time-varying constraint force required to Analytical mechanics: keep the bead in the groove. For the same problem using Lagrangian mechanics, one Lagrangian mechanics looks at the path of the groove and chooses a set of independent generalized Hamiltonian mechanics coordinates that completely characterize the possible motion of the bead.
    [Show full text]
  • History of Mathematics in the Eighteenth Century
    MATHEMATICS Craig Fraser Considered broadly, mathematical activity in the eighteenth century was characterized by a strong emphasis on analysis and mechanics. The great ad- vances occurred in the development of calculus-related parts of mathematics and in the detailed elaboration of the program of inertial mechanics founded during the Scientific Revolution. There were other mathematical develop- ments of note – in the theory of equations, number theory, probability and statistics, and geometry – but none of them reached anything like the depth and scope attained in analysis and mechanics. The close relationship between mathematics and mechanics had a basis that extended deep into Enlightenment thought. In the Preliminary Discourse to the famous French Encyclopédie, Jean d’Alembert distinguished between “pure” mathematics (geometry, arithmetic, algebra, calculus) and “mixed” mathe- matics (mechanics, geometrical astronomy, optics, art of conjecturing). He classified mathematics more generally as a “science of nature” and separated it from logic, a “science of man.” An internalized and critical spirit of inquiry, associated with the invention of new mathematical structures (for example, non-commutative algebra, non-Euclidean geometry, logic, set theory), rep- resents characteristics of modern mathematics that would emerge only in the next century. Although there were several notable British mathematicians of the period – Abraham De Moivre, James Stirling, Brook Taylor, and Colin Maclaurin among them – the major lines of mathematical production occurred on the Continent, a trend that intensified as the century developed.1 Leadership was provided by a relatively small number of energetic figures: Jakob, Johann, and Daniel Bernoulli, Jakob Hermann, Leonhard Euler, Alexis Clairaut, Jean d’Alembert, Johann Heinrich Lambert, Joseph Louis Lagrange, Adrien Marie Legendre, and Pierre Simon Laplace.
    [Show full text]
  • The 18Th-Century Battle Over Lunar Motion - Physics Today Janu
    The 18th-century battle over lunar motion - Physics Today Janu... http://ptonline.aip.org/servlet/PrintPTJ Physics Today URL: http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_63/iss_1 Published: January 2010 /27_1.shtml [Permission to reprint or copy this article/photo must be obtained from Physics Today. Call 301-209-3042 or e-mail [email protected] with your request.] ARTICLES The 18th-century battle over lunar motion In a dispute with more than just scientific import, Alexis Clairaut, Leonhard Euler, and Jean le Rond d’Alembert each employed their own strategies to establish that they were the first to understand a puzzling feature of the Moon’s orbit. Siegfried Bodenmann About two years after Sputnik 1 began emitting radio signals, the Soviet Union’s Luna 2 became the first manmade object to reach the Moon. The intentional crash landing of the spacecraft on 13 September 1959 once again demonstrated Soviet technological superiority over the US. That event can be regarded as the trigger of the so-called race to the Moon, initiated by President John F. Kennedy in May 1961. As the much-broadcast commemoration of Apollo 11 and the first manned landing on the Moon reminded us, the Americans won the competition. Every story has a prologue. The one preceding Neil Armstrong’s historic steps shows that a captivating plot from the past needn’t include a cold war or spies. It tells of three men who competed to develop a predictive theory that would accurately describe the motion of the Moon and therefore furnish a key tool that, much later, would help the Soviets and the Americans anticipate the position of their celestial target.
    [Show full text]
  • Mentors, the Marquise Du Châtelet and Historical Memory Author(S): Judith P
    Mentors, the Marquise Du Châtelet and Historical Memory Author(s): Judith P. Zinsser Source: Notes and Records of the Royal Society of London, Vol. 61, No. 2 (May 22, 2007), pp. 89-108 Published by: The Royal Society Stable URL: http://www.jstor.org/stable/20462616 . Accessed: 15/11/2013 10:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Notes and Records of the Royal Society of London. http://www.jstor.org This content downloaded from 75.102.94.107 on Fri, 15 Nov 2013 10:27:53 AM All use subject to JSTOR Terms and Conditions NOTES & RECORDS Notes Rec. R. Soc. (2007) 61, 89-108 -OF THE ROYAL doi: 10.1098/rsnr.2006.0174 SOCIETY Published online 27 March 2007 MENTORS, THE MARQUISE DU CHATELET AND HISTORICAL MEMORY by JUDITH P. ZINSSER* Department of History, Miami University, Upham Hall, 252 Oxford, OH 45056, USA When writing a biography, much has to be omitted to keep the life story focused and manageable for the reader. In La Dame d'Esprit: a biography of themarquise Du Chatelet the information about Emilie Du Chatelet's mentors seems, in retrospect, all too brief.
    [Show full text]
  • John Greenberg (1945–2004)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 32 (2005) 1–3 www.elsevier.com/locate/hm In Memoriam John Greenberg (1945–2004) Born and educated in New York, John Greenberg took his first degree at Shimer College in Waukegan, Illinois. The curriculum at this liberal arts college included a course based upon the Great Books pro- gramme, which presumably gave him his first taste for the history of ideas. After taking a Master’s degree in mathematics at Johns Hopkins University in Baltimore, he began research in the history of science. His work focused upon the mathematics and mechanics of the 18th century, with a special focus upon France, the development of the calculus of several variables, and the study of the shape of the Earth. All these topics were rehearsed in his doctoral thesis (1979), which he pursued at the University of Wiscon- sin at Madison under the supervision of Dan Siegel. During its preparation he spent time in the archives and academies of Paris, and in order to continue his studies he moved in 1979 with his wife, Maité, and two children to Palaiseau near Paris. But in 1981 he secured a two-year appointment in the archives of the California Institute of Technology (Caltech) in Pasadena in his native USA, in connection with a project on the history of the Institute; it led to a paper (1983b) on the applied mathematician Theodore von Kármán (1881–1963), written with the Institute’s archivist, Judith R. Goodstein. The employment at Caltech was extended to three years; it was the only academic post that Greenberg was to hold in his maturity.
    [Show full text]
  • Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families
    entropy Article Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families Frédéric Barbaresco Advanced Radar Concepts Business Unit, Thales Air Systems, Limours 91470, France; [email protected] Academic Editor: Adom Giffin Received: 4 August 2016; Accepted: 27 September 2016; Published: 4 November 2016 Abstract: We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we compare with Koszul works on G/K homogeneous space and bijective correspondence between the set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS (Kostant–Kirillov–Souriau) 2-form that associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this model in the framework of information geometry for the action of an affine group for exponential families, and provide some illustrations of use cases for multivariate gaussian densities.
    [Show full text]
  • Maupertuis's Principle of Least Action
    Maupertuis’s Principle of Least Action: Epistemology and Metaphysics Marco Storni (Forschungszentrum Gotha der Universität Erfurt) The paper deals with Pierre-Louis Moreau de Maupertuis’s (1698-1759) writings on the principle of least action (PLA). I discuss Maupertuis’s philosophical interpretation of the PLA by analysing three of his papers (1740, 1744, 1746), in order to assess the overall consistency of his argument. As I shall argue, Maupertuis presents the PLA as a universal principle of nature, this being at odds with the empiricist inspiration of his epistemology. Maupertuis’s attempt to introduce conceptual elements borrowed from the Leibnizian tradition into a Newtonian-inspired framework creates in fact a tension that is difficult to overcome. Keywords: Maupertuis, principle of least action, Newton, Leibniz, epistemology, metaphysics Introduction In 1740, Pierre-Louis Moreau de Maupertuis (1698-1759) was invited by Frederick II of Prussia to be the chairman of the Berlin Academy of Sciences. Thenceforth, Maupertuis would increasingly become uninterested in regular scientific practice, and inclined more towards philosophical speculation1. The development of Maupertuis’s interest in philosophical matters roughly coincides with this biographical episode, and is tightly linked to the formulation of the «principle of least action» (PLA)2. In what follows, I shall discuss a few epistemological questions linked to Maupertuis’s formulation of PLA, most notably the relationship between physical laws and metaphysical principles. This I shall do by relying on three of his papers (Maupertuis 1740, 1744, 1746), which represent three successive steps toward the formulation and philosophical framing of the PLA. I shall start from the core epistemological 1 See Brown 1963 and Casini 1983.
    [Show full text]
  • The 18Th-Century Battle Over Lunar Motion
    The 18th-century battle over lunar motion Siegfried Bodenmann In a dispute with more than just scientific import, Alexis Clairaut, Leonhard Euler, and Jean le Rond d’Alembert each employed their own strategies to establish that they were the first to understand a puzzling feature of the Moon’s orbit. Siegfried Bodenmann ([email protected]) is a coeditor of Leonhard Euler’s French correspondence for the Euler Commis- sion of the Swiss Academy of Sciences in Basel, Switzerland. About two years after Sputnik 1 began emitting radio sig- the direction of Pierre Louis Moreau de Maupertuis. Despite nals, the Soviet Union’s Luna 2 became the first manmade ob- the plague of flies, the cold winter, and all the dangers of the ject to reach the Moon. The intentional crash landing of the undertaking—including the perilous transport of astronom- spacecraft on 13 September 1959 once again demonstrated ical instruments through rapids and dense woods—Clairaut Soviet technological superiority over the US. That event can helped prove that Earth is flattened at the poles by measuring be regarded as the trigger of the so-called race to the Moon, a degree of the meridian. As historian Mary Terrall explores initiated by President John F. Kennedy in May 1961. As the in her imposing book The Man Who Flattened the Earth: Mau- much-broadcast commemoration of Apollo 11 and the first pertuis and the Sciences in the Enlightenment (University of manned landing on the Moon reminded us, the Americans Chicago Press, 2002), Clairaut and Maupertuis thus showed won the competition.
    [Show full text]
  • The Evolution of Dynamics, Vibration Theory from 1687 to 1742, by John T
    BOOK REVIEWS 107 7. R. Goldblatt, Topoi, the categorical analysis of logic, North-Holland, Amsterdam, 1979. 8. J. W. Gray, The categorical comprehension scheme, Lecture Notes in Math., vol. 99, Springer-Verlag, Berlin and New York, 1969, pp. 242-312. 9. , Formal category theory: Adjointness for 2-categories, Lecture Notes in Math., vol. 391, Springer-Verlag, Berlin and New York, 1974. 10. , Fragments of the history of sheaf theory, Lecture Notes in Math., vol 753, Springer-Verlag, Berlin and New York, 1979, pp. 1-79. 11. P. Johnstone, Topos theory, London Math. Soc. Monographs, no. 10, Academic Press, New York, 1977. 12. G. M. Kelly, Adjunction for enriched categories, Lecture Notes in Math., vol. 106, Springer- Verlag, Berlin and New York, 1969, pp. 166-177. 13. , Structures defined by finite limits in the enriched context. I, Cahiers Topologie Géom. Différentielle 23 (1982), 3-42. 14. G. M. Kelly and R. H. Street, Review of the elements of 2-categories, Lecture Notes in Math., vol. 420, Springer-Verlag, Berlin and New York, 1974, pp. 75-103. 15. A. Kock, Synthetic differential geometry, London Math. Soc. Lecture Note Ser., No. 51, Cambridge Univ. Press, New York, 1981. 16. F. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506-1511. 17. , The category of categories as a foundation f or mathematics, Proc. Conf. Categorical Algebra (La Jolla, 1965), Srpinger-Verlag, New York, 1966, pp. 1-20. 18. F. E. J. Linton, Autonomous categories and duality of functors, J. Algebra 2 (1965), 315-349.
    [Show full text]