TEAMS Specialist Report Template 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
Spore Prints
SPORE PRINTS BULLETIN OF THE PUGET SOUND MYCOLOGICAL SOCIETY Number 473 June 2011 OLDEST, ODDEST FUNGI FINALLY “The big message here is that most fungi and most fungal diversity PHOTOGRAPHED Susan Milius reside in fungi that have neither been collected nor cultivated,” Science News, May 12, 2011 says John W. Taylor of the University of California, Berkeley. Exeter team member Meredith Jones spotted the hard-to-detect organisms by marking them with fluorescent tags. The trick re- vealed fungal cells attached to algal cells as if parasitizing them. M. Jones One of the big questions about early fungi is whether they might have arisen from “some kind of parasitic ancestor like Rozella,” says Rytas Vilgalys of Duke University. Interesting, yes. But loosening the definition of fungi to include organisms without chitin walls could wreak havoc in the concept of that group, objects Robert Lücking of the Field Museum in Chicago. “I would actually conclude, based on the evidence, that these are not fungi,” he says. Instead, they might be near rela- tives—an almost-fungus. Two fungal cells, possibly from an ancient lineage, each show a curvy, taillike flagellum (red) during a mobile stage in their life cycle. IS MUTATED FUNGUS KILLING AMERICAN BATS? Andy Coghlan Images of little dots, some wriggling a skinny tail, give scientists New Scientist, May 24, 2011 a first glimpse of a vast swath of the oldest, and perhaps oddest, fungal group alive today. A fungus blamed for killing more than a mil- The first views suggest that, unlike any other fungi known, these lion bats in the US since 2006 has been found might live as essentially naked cells without the rigid cell wall to differ only slightly from an apparently that supposedly defines a fungus, says Tom Richards of the Natu- harmless European version. -
Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum -
The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine. -
4118880.Pdf (10.47Mb)
Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ge, Zai-Wei, Zhu L. Yang, Donald H. Pfister, Matteo Carbone, Tolgor Bau, and Matthew E. Smith. 2014. “Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota).” PLoS ONE 9 (8): e103457. doi:10.1371/journal.pone.0103457. http:// dx.doi.org/10.1371/journal.pone.0103457. Published Version doi:10.1371/journal.pone.0103457 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785861 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota) Zai-Wei Ge1,2,3*, Zhu L. Yang1*, Donald H. Pfister2, Matteo Carbone4, Tolgor Bau5, Matthew E. Smith3 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, 2 Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 4 Via Don Luigi Sturzo 173, Genova, Italy, 5 Institute of Mycology, Jilin Agriculture University, Changchun, Jilin, China Abstract The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the ‘‘earth tongue fungi’’ in the genera Cudonia and Spathularia. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
Systematics of the Genus Ramaria Inferred from Nuclear Large Subunit And
AN ABSTRACT OF THE THESIS OF Andrea J. Humpert for the degree of Master of Science in Botany and Plant Pathology presented on November 11, 1999. Title: Systematics of the Genus Ramaria Inferred from Nuclear Large Subunit and Mitochondrial Small Subunit Ribosomal DNA Sequences. Abstract approved: Redacted for Privacy Joseph W. Spatafora Ramaria is a genus of epigeous fungi common to the coniferous forests of the Pacific Northwest of North America. The extensively branched basidiocarps and the positive chemical reaction of the context in ferric sulfate are distinguishing characteristics of the genus. The genus is estimated to contain between 200-300 species and is divided into four subgenera, i.) R. subgenus Ramaria, ii.) R. subgenus Laeticolora, iii.) R. subgenus Lentoramaria and iv.) R. subgenus Echinoramaria, according to macroscopic, microscopic and macrochemical characters. The systematics of Ramaria is problematic and confounded by intraspecific and possibly ontogenetic variation in several morphological traits. To test generic and intrageneric taxonomic classifications, two gene regions were sequenced and subjected to maximum parsimony analyses. The nuclear large subunit ribosomal DNA (nuc LSU rDNA) was used to test and refine generic, subgeneric and selected species concepts of Ramaria and the mitochondrial small subunit ribosomal DNA (mt SSU rDNA) was used as an independent locus to test the monophyly of Ramaria. Cladistic analyses of both loci indicated that Ramaria is paraphyletic due to several non-ramarioid taxa nested within the genus including Clavariadelphus, Gautieria, Gomphus and Kavinia. In the nuc LSU rDNA analyses, R. subgenus Ramaria species formed a monophyletic Glade and were indicated for the first time to be a sister group to Gautieria. -
989946 1302 1170751 1057 After
ITS1 ITS2 Seqs OTUs Seqs OTUs Fungi (0.95) 992852 1911 1173834 1691 Raw in OTU 989946 1302 1170751 1057 table (n≥10) After decontam 915747 1206 1016235 1044 Final(97% 889290 1193 992890 1032 coverage) Table S1. Total sequence count + OTUs for ITS1 + ITS2 datasets at each OTU table trimming step.1Non-target samples discarded. ITS1 ITS2 Seqs zOTUs Seqs zOTUs All zotus1 1061048 3135 2689730 1880 Fungi 1024007 3094 1210397 1705 (0.95) After 997077 3012 1107636 1685 decontam Final(97% 967316 2772 1083789 1559 coverage) Table S2. Total sequence count + zotus (n=8) for ITS1 + ITS2 datasets at each zotu table trimming step. 1Non-target samples and "zotus"/ASVs with <8 copies discarded. Bistorta vivipara Dryas octopetala Salix polaris (n=519)1 (n=22) (n=20)2 Fungi (0.95) 917667 41314 33871 Raw in OTU 914888 41272 33786 table (n≥10) After 843137 39880 32730 decontam Final (97% 803649 39880 30069 coverage) Sequences min=251, min=382, min=449, per avg=1523.6, avg=1812.7, avg=1551.2, sample max=7680 max=3735 max=3516 Table S3. ITS1 data quality filtering steps (OTUs). For Bistorta vivipara, 80 samples of the original 599 that had too few sequences to meet the coverage threshold of 97% in both the OTU and zotu datasets were discarded. 21 Salix polaris sample was discarded for the same reason. Bistorta vivipara Dryas octopetala Salix polaris (n=519)1 (n=22) (n=20) 2 Fungi (0.95) 984812 44702 36145 After 919672 43286 34119 decontam Final (97% 908621 43286 33141 coverage) Sequences min=251, min=382, min=449, per avg=1519.4, avg=1812.7, avg=1546.7, sample max=7680 max=3730 max=3516 Table S4. -
Chrysomphalina Grossula (Pers.) Norvell, Redhead & Ammirati
S3 - 44 Chrysomphalina grossula (Pers.) Norvell, Redhead & Ammirati ROD name Chrysomphalina grossula Family Tricholomataceae Morphological Habit mushroom Description: CAP 2-35 (-60) mm broad, convex to plano-convex with incurved margin when young, becoming convexo-umbilicate to uplifted with age, moist, hygrophanous, striate, smooth, initially yellow to brown or green-yellow, becoming pale green-yellow with age or even off-white, color of margin yellow to green-yellow; with age the entire cap almost white. GILLS strongly decurrent, initially ending at the same point on the stem apex, arcuate, thickened in age and often intervenous, edges even, yellow to green- yellow becoming slightly paler to off-white on exposure or with age. STEM central, 5-40 (-55) mm long, more or less equal 1.5-7 mm at apex, usually hollow in mature specimens, more or less smooth but may appear minutely pubescent, yellow or green-yellow. ODOR AND TASTE not distinct. PILEIPELLIS of thin-walled, smooth, nongelatinized, compactly parallel to subparallel hyphae. BASIDIA 33-48 x 5-8 µm, cylindrical to narrowly clavate, (2-) 4 spored. STERIGMATA 3-7.4 (10) µm long. CYSTIDIA absent. CLAMP CONNECTIONS absent. SPORES ellipsoid to subellipsoid 6-9.5 x 3.7-5.5 (-6) µm, with conspicuous obtuse apiculus and rounded apex, hyaline, smooth, thin walled, inamyloid, spore print white. Distinguishing Features: Chrysomphalina grossula is a small, green-yellow mushroom with brown or green-yellow, moist, initially convex then uplifted-umbilicate caps, with yellow to green-yellow, strongly decurrent, widely separated thickened gills, and slightly paler hollow stems. Chrysomphalina grossula is similar in size and habit to Omphalina ericetorum. -
Phylogenetic Relationships of the Gomphales Based on Nuc-25S-Rdna, Mit-12S-Rdna, and Mit-Atp6-DNA Combined Sequences
fungal biology 114 (2010) 224–234 journal homepage: www.elsevier.com/locate/funbio Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences Admir J. GIACHINIa,*, Kentaro HOSAKAb, Eduardo NOUHRAc, Joseph SPATAFORAd, James M. TRAPPEa aDepartment of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA bDepartment of Botany, National Museum of Nature and Science (TNS), Tsukuba-shi, Ibaraki 305-0005, Japan cIMBIV/Universidad Nacional de Cordoba, Av. Velez Sarfield 299, cc 495, 5000 Co´rdoba, Argentina dDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA article info abstract Article history: Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales Received 16 September 2009 were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S- Accepted 11 January 2010 rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial Available online 28 January 2010 atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species were inves- Corresponding Editor: G.M. Gadd tigated, including members of the Clathraceae, Gautieriaceae, Geastraceae, Gomphaceae, Hysterangiaceae, Phallaceae, Protophallaceae, and Sphaerobolaceae. Although some nodes Keywords: deep in the tree could not be fully resolved, some well-supported lineages were recovered, atp6 and the interrelationships among Gloeocantharellus, Gomphus, Phaeoclavulina, and Turbinel- Gomphales lus, and the placement of Ramaria are better understood. Both Gomphus sensu lato and Rama- Homobasidiomycetes ria sensu lato comprise paraphyletic lineages within the Gomphaceae. Relationships of the rDNA subgenera of Ramaria sensu lato to each other and to other members of the Gomphales were Systematics clarified. -
Keanekaragaman Jenis Jamur Makroskopis Di Hutan Desa Tewah Pupuh Kabupaten Barito Timur
BiosciED: Journal of Biological Science and Education Vol. 1 No. 1, 2020 p-ISSN: 2746-9786 DOI: 10.37304 KEANEKARAGAMAN JENIS JAMUR MAKROSKOPIS DI HUTAN DESA TEWAH PUPUH KABUPATEN BARITO TIMUR Sri Leluni1*, Siti Sunariyati2, Adventus Panda2 1Program Studi Pendidikan Biologi, FKIP, Universitas Palangka Raya, Palangka Raya 2Program Studi Biologi, FMIPA, Universitas Palangka Raya, Palangka Raya *email: [email protected] Abstrak. Jamur termasuk sel eukariotik yang tidak memiliki klorofil, tumbuh dari hifa, memiliki dinding sel yang mengandung kitin, bersifat heterotrof, menyerap nutrien melalui dinding selnya, dan mengekresikan enzim ekstraseluler ke lingkungan melalui spora, melakukan reproduksi seksual dan aseksual. Jamur makroskopis adalah jamur yang tubuh buahnya berukuran besar (berukuran 0,6 cm atau lebih besar), struktur reproduktif yang terbentuk untuk menghasilkan dan menyebarkan sporanya. Keberadaan jenis jamur di Hutan Desa Tewah Pupuh Kabupaten Barito Timur masih banyak yang belum diketahui dan tidak dibudidayakan. Kurangnya perhatian pemerintah daerah setempat terhadap keanekaragaman dan pelestarian merupakan alasan penting untuk dilakukannya penelitian. Penelitian ini juga bertujuan untuk mengetahui keanekaragaman jamur Makroskopis di Desa Tewah Pupuh dan diharapkan dapat membantu pembelajaran siswa di Sekolah Menengah Atas dalam Materi Keanekaragaman Hayati. Metode yang digunakan dalam penelitian ini adalah metode survei dengan teknik Purposive Sampling untuk menjelajah daerah yang terdapat jenis jamur, yaitu dengan dilakukannya -
MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death.