Identification of Autophagy-Modulating Natural Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dissertation Philip Böhler
Three Tales of Death: New Pathways in the Induction, Inhibition and Execution of Apoptosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Philip Böhler aus Bonn Düsseldorf, Juni 2019 aus dem Institut für Molekulare Medizin I der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Prof. Dr. Sebastian Wesselborg 2. Prof. Dr. Henrike Heise Tag der mündlichen Prüfung: 29. Oktober 2019 “Where the first primal cell was, there was I also. Where man is, there am I. When the last life crawls under freezing stars, there will I be.” — DEATH, in: Mort, by Terry Pratchett “Right away I found out something about biology: it was very easy to find a question that was very interesting, and that nobody knew the answer to.” — Richard Feynman, in: Surely You're Joking, Mr. Feynman! Acknowledgements (Danksagung) Acknowledgements (Danksagung) Viele Menschen haben zum Gelingen meiner Forschungsarbeit und dieser Dissertation beigetragen, und nicht alle können hier namentlich erwähnt werden. Dennoch möchte ich einige besonders hervorheben. An erster Stelle möchte ich Professor Sebastian Wesselborg danken, der diese Dissertation als Erstgutachter betreut hat und der mir die Möglichkeit gab, die dazugehörigen experimentellen Arbeiten am Institut für Molekulare Medizin durchzuführen. Er und Professor Björn Stork, dem ich für die herzliche Aufnahme in seine Arbeitsgruppe danke, legten durch die richtige Mischung aus aktiver Förderung und dem Freiraum zur Umsetzung eigener wissenschaftlicher Ideen die ideale Grundlage für die Forschungsprojekte, aus denen diese Dissertation entstand. Professorin Henrike Heise, die sich freundlicherweise zur Betreuung dieser Dissertation als Zweitgutachterin bereiterklärt hat, gilt ebenfalls mein herzlicher Dank. -
Huang Grad.Sunysb 0771E 10211
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Development of a quantitative assay for mitochondrial fusion and characterization of a lipid signaling pathway on the mitochondrial surface A Dissertation Presented by Huiyan Huang to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Pharmacology Stony Brook University August 2010 Stony Brook University The Graduate School Huiyan Huang We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Michael A. Frohman, M.D., Ph.D. - Dissertation Advisor Professor Department of Pharmacological Sciences Daniel F. Bogenhagen, MD - Chairperson of the Defense Professor Department of Pharmacological Sciences Robert S. Haltiwanger, Ph.D. Professor Department of Biochemistry and Structural Biology Deborah A. Brown, Ph.D. Professor Department of Biochemistry and Structural Biology This dissertation is accepted by the Graduate School. Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation Development of a quantitative assay for mitochondrial fusion and characterization of a lipid signaling pathway on the mitochondrial surface by Huiyan Huang Doctor of Philosophy in Molecular and Cellular Pharmacology Stony Brook University 2010 Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). -
Nutraceuticals and Fundamental Foods
NUTRACEUTICALS AND FUNCTIONAL FOODS - Nutritional Value, Functional Properties And Industrial Applications Of Fruit Juice - R L Bardwaj and Urvashi Nandal NUTRITIONAL VALUE, FUNCTIONAL PROPERTIES AND INDUSTRIAL APPLICATIONS OF FRUIT JUICE R L Bardwaj and Urvashi Nandal Krishi Vigyan Kendra, Sirohi, Maharana Pratap University of Agriculture & Technology, Udaipur, Rajasthan, India Keywords: Fruit juice, therapeutic value, health security, nutrition security, antioxidant, vitamin C, vitamin A, folate, obesity, diabetes, macro and micro-nutrients, bioactive components, phytochemicals, functional food, neutraceutical, future trends, industrial applications, storage, dietary recommendations, juice blend, organic acids, resveratrol, pharmacokinetics. Contents 1. Introduction 2. Role of Fruit Juices in Therapeutic Nutritional Security: A Concept 3. Categories and Products of Fruit Juices 4. Bioactive Compounds in Fruit Juices 5. Proximate Composition and Nutritional Properties of Fruit Juices 6. Interaction Mechanism of Fruit Juice Components in Human Body 7. Industrial Applications of Fruit Juices and Future Prospects of Fruit Juice Industry 8. General Dietary Recommendations of Fruit Juice 9. Therapeutic Role of Fruit Juices 10. Negative Elements and Counter Argumentation 11. Concluding Remarks Glossary Bibliography Biographical Sketches Summary Considerable interest in fruit juices has been developed over the years due to their potential biological and health promoting effects. Consumption of fresh fruit is often replaced by the intake of fruit juices, due to their easily, conveniently and readily consumable nature which is the need of today’s fast and busy life. It is the unfermented but fermentable liquid obtained from the edible part of sound, appropriately mature and fresh fruit. Fruit juices contain nutrients like vitamins, minerals, trace elements, energy and phytochemicals including flavonoids, polyphenols and antioxidants that have been shown to have varied health benefits. -
Mangifera Indica) Cultivars from the Colombian Caribbean
Vol. 11(7), pp. 144-152, 17 February, 2017 DOI: 10.5897/JMPR2017.6335 Article Number: 94A673D62820 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Mangiferin content, carotenoids, tannins and oxygen radical absorbance capacity (ORAC) values of six mango (Mangifera indica) cultivars from the Colombian Caribbean Marcela Morales1, Santiago Zapata1, Tania R. Jaimes1, Stephania Rosales1, Andrés F. Alzate1, Maria Elena Maldonado2, Pedro Zamorano3 and Benjamín A. Rojano1* 1Laboratorio Ciencia de los Alimentos, Universidad Nacional de Colombia, Medellín, Colombia. 2Escuela de nutrición, Universidad de Antioquia, Medellín, Colombia. 3Graduate School, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Chile. Received 18 January, 2017; Accepted 13 February, 2017 Mango is one of the tropical fruits of greater production and consumption in the world, and a rich source of bioactive compounds, with various functional properties such as antioxidant activity. In Colombia, mango’s market is very broad and diverse. However, there are very few studies that determined the content of bioactive secondary metabolites. The objective of this study was to evaluated the content of different metabolites like Mangiferin, carotenoids, tannins, and the antioxidant capacity by oxygen radical absorbance capacity (ORAC) methodology of six cultivars from the Colombian Caribbean region, with total carotenoid values ranging from 24.67 to 196.15 mg of β-carotene/100 g dry pulp; 84.30 to 161.49 mg Catequine eq./100 g dry pulp for the content of condensed tannins, and 91.80 to 259.23 mg/100 g dry pulp for mangiferin content. -
Health-Promoting Effects of Traditional Foods
Health-PromotingFoodsTraditional Effects of • Marcello Iriti Health-Promoting Effects of Traditional Foods Edited by Marcello Iriti Printed Edition of the Special Issue Published in Foods Health-Promoting Effects of Traditional Foods Health-Promoting Effects of Traditional Foods Editor Marcello Iriti MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Marcello Iriti Department of Agricultural and Environmental Sciences, Milan State University Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/health effects traditional foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-312-4 (Hbk) ISBN 978-3-03943-313-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Marcello Iriti, Elena Maria Varoni and Sara Vitalini Healthy Diets and Modifiable Risk Factors for Non- Communicable Diseases—The European Perspective Reprinted from: Foods 2020, 9, 940, doi:10.3390/foods9070940 .................... -
Mitochondrial Rhomboid PARL Regulates Cytochrome C Release During Apoptosis Via OPA1-Dependent Cristae Remodeling
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling Sara Cipolat,1,7 Tomasz Rudka,2,7 Dieter Hartmann,2,7 Veronica Costa,1 Lutgarde Serneels,2 Katleen Craessaerts,2 Kristine Metzger,2 Christian Frezza,1 Wim Annaert,3 Luciano D’Adamio,5 Carmen Derks,2 Tim Dejaegere,2 Luca Pellegrini,6 Rudi D’Hooge,4 Luca Scorrano,1,* and Bart De Strooper2,* 1 Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy 2 Neuronal Cell Biology and Gene Transfer Laboratory 3 Membrane Trafficking Laboratory Center for Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB4) and K.U.Leuven, Leuven, Belgium 4 Laboratory of Biological Psychology, K.U.Leuven, Leuven, Belgium 5 Albert Einstein College of Medicine, Bronx, NY 10461, USA 6 Centre de Recherche Robert Giffard, Universite` Laval, G1J 2G3 Quebec, Canada 7 These authors contribute equally to this work. *Contact: [email protected] (L.S.); [email protected] (B.D.S.) DOI 10.1016/j.cell.2006.06.021 SUMMARY been identified in D. melanogaster (Freeman, 2004), where they function as essential activators of the epidermal Rhomboids, evolutionarily conserved integral growth factor (EGF) signaling pathway, proteolytically membrane proteases, participate in crucial sig- cleaving the EGF receptor ligands Spitz, Gurken, and naling pathways. Presenilin-associated rhom- Keren. Since all Rhomboids share a conserved serine boid-like (PARL) is an inner mitochondrial protease catalytic dyad (Lemberg et al., 2005), it has membrane rhomboid of unknown function, been suggested that they are able to cleave proteins in whose yeast ortholog is involved in mito- the transmembrane domain. -
The Screening of Phytochemical and Antioxidant Activity of Agarwood Leaves (Aquilaria Malaccensis) from Two Sites in North Sumatra, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 4, April 2020 E-ISSN: 2085-4722 Pages: 1588-1596 DOI: 10.13057/biodiv/d210440 The screening of phytochemical and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia RIDWANTI BATUBARA1,, SURJANTO2, T. ISMANELLY HANUM2, ARBI HANDIKA1, ODING AFFANDI1 1Faculty of Forestry, Universitas Sumatera Utara. Jl. Tridharma Ujung No. 1, Kampus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia. Tel.: +62-61-8220605, Fax.: +62-61-8201920, email: [email protected] 2Faculty of Pharmacy, Universitas Sumatera Utara. Jl. Tridharma Ujung No. 4, Kampus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia. Manuscript received: 7 August 2019. Revision accepted: 23 March 2020. Abstract. Batubara R, Surjanto, Hanum TI, Handika A, Afandi O. 2020. Phytochemical screening and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia. Biodiversitas 21: 1588-1596. Agarwood of gaharu (Aquilaria malaccensis Lamk) has an antioxidant activity which can reduce free radicals. This research was conducted to analyze the chemical compounds of agarwood, and the antioxidant activities from two different grown sites, Laru, and Hutanabolon Village. Ethanol extracts of the agarwood leaves (EEAL) were obtained through maceration method. The phytochemical screening included the examination of secondary plant metabolites, while antioxidant activity was determined by free radicals scavenging activity against 1,1- diphenyl-2-picrylhydrazyl -
Mitochondrial Network Fragmentation Modulates Mutant Mtdna Accumulation Independently of Absolute Fission-Fusion Rates
bioRxiv preprint doi: https://doi.org/10.1101/409128; this version posted September 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Mitochondrial network fragmentation modulates mutant mtDNA accumulation independently of absolute fission-fusion rates Juvid Aryaman1, Charlotte Bowles2, Nick S. Jones1,3*, Iain G. Johnston2,3,4† 1 Department of Mathematics, Imperial College London, London, United Kingdom 2 School of Biosciences, University of Birmingham, Birmingham, United Kingdom 3 EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom 4 Lead Contact *[email protected] †[email protected] Summary Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of the resulting mitochondrial networks in determining the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide- reaching mathematical treatment which bridges mitochondrial network and genetic states. We show that, for a range of models, the rate of increase in heteroplasmy variance, and the rate of de novo mutation, is proportionately modulated by the fraction of unfused mitochondria, independently of the absolute fission- fusion rate. -
Natural Hydroxyanthraquinoid Pigments As Potent Food Grade Colorants: an Overview
Review Nat. Prod. Bioprospect. 2012, 2, 174–193 DOI 10.1007/s13659-012-0086-0 Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview a,b, a,b a,b b,c b,c Yanis CARO, * Linda ANAMALE, Mireille FOUILLAUD, Philippe LAURENT, Thomas PETIT, and a,b Laurent DUFOSSE aDépartement Agroalimentaire, ESIROI, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France b LCSNSA, Faculté des Sciences et des Technologies, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France c Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France Received 24 October 2012; Accepted 12 November 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract: Natural pigments and colorants are widely used in the world in many industries such as textile dying, food processing or cosmetic manufacturing. Among the natural products of interest are various compounds belonging to carotenoids, anthocyanins, chlorophylls, melanins, betalains… The review emphasizes pigments with anthraquinoid skeleton and gives an overview on hydroxyanthraquinoids described in Nature, the first one ever published. Trends in consumption, production and regulation of natural food grade colorants are given, in the current global market. The second part focuses on the description of the chemical structures of the main anthraquinoid colouring compounds, their properties and their biosynthetic pathways. Main natural sources of such pigments are summarized, followed by discussion about toxicity and carcinogenicity observed in some cases. As a conclusion, current industrial applications of natural hydroxyanthraquinoids are described with two examples, carminic acid from an insect and Arpink red™ from a filamentous fungus. -
Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: a Review
REVIEW published: 26 April 2018 doi: 10.3389/fphar.2018.00309 Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review Fazilath Uzma 1†, Chakrabhavi D. Mohan 2†, Abeer Hashem 3, Narasimha M. Konappa 4, Shobith Rangappa 5, Praveen V. Kamath 1, Bhim P. Singh 6, Venkataramana Mudili 7, Vijai K. Gupta 8, Chandra N. Siddaiah 4*, Srinivas Chowdappa 1*, Abdulaziz A. Alqarawi 9 and Elsayed F. Abd_Allah 9 1 Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India, 2 Department of Studies in Molecular Biology, University of Mysore, Mysore, India, 3 Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia, 4 Department of Studies in Biotechnology, University of Mysore, Mysore, India, 5 Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Mandya, India, Edited by: 6 Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India, Salvatore Salomone, 7 Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University, Coimbatore, India, 8 Department of Università degli Studi di Catania, Italy Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Reviewed by: Estonia, 9 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Gustavo Molina, Arabia Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Brazil Cancer is a major cause of death worldwide, with an increasing number of cases being Marian Brestic, reported annually. The elevated rate of mortality necessitates a global challenge to Slovak University of Agriculture, Slovakia explore newer sources of anticancer drugs. Recent advancements in cancer treatment *Correspondence: involve the discovery and development of new and improved chemotherapeutics derived Chandra N. -
Xanthone Dimers: a Compound Family Which Is Both Common and Privileged
Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2014 Electronic supplementary information (ESI) for Natural Product Reports SUPPORTING INFORMATION Xanthone Dimers: A Compound Family which is both Common and Privileged. Tim Wezeman,a Stefan Bräsea,b* and Kye-Simeon Mastersc* a Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, Fax: (+49) 721 6084 8581, Email: [email protected] b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany c School of Chemistry, Physics and Mechanical Engineering (CPME), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia E-mail: [email protected] The ‘Supporting Information’ is a supplementary data illustrating the structural features of biaryl linked xanthones, the natural sources from which the di- and trimeric xanthones have been extracted and a summary of all the available biological activities for the discussed xanthones. The ‘Supporting Information’ was composed of three parts: Table S1 Structural Features of Biaryl Linked Xanthones Table S2 Dimeric and Trimeric Xanthones and their natural sources Table S3 Summary of all the available biological activities for the xanthone dimers References Table S1: Structural Features of Biaryl Linked Xanthones Compound Number Linka Methylation -
View PDF Version
RSC Advances View Article Online PAPER View Journal | View Issue Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp.† Cite this: RSC Adv.,2017,7,5381 ab c d d Yang Liu, Fabian Stuhldreier, Tibor Kurtan,´ Attila Mandi,´ e f c c Sathishkumar Arumugam, Wenhan Lin, Bjorn¨ Stork, Sebastian Wesselborg, Horst Weber,g Birgit Henrich,h Georgios Daletos*a and Peter Proksch*a Two new benzo[j]fluoranthene metabolites, daldinones H, J (1 and 3), and the likewise undescribed artefact, daldinone I (2), along with six known compounds (4–9) were isolated from the endophytic fungus Annulohypoxylon sp. that was obtained from the Mangrove plant Rhizophora racemosa collected in Cameroon. The structures of the new compounds were elucidated by 1D and 2D NMR as well as by HRESIMS and ECD spectra analysis. Co-cultivation of this fungus with the actinomycetes Streptomyces lividans or with Streptomyces coelicolor resulted in an up to 38-fold increase of 1-hydroxy-8- methoxynaphthalene (9), while no significant induction was detected when the fungus was co-cultivated either with Bacillus subtilis or with Bacillus cereus. Compound 2 exhibited strong to moderate Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cytotoxicity against Ramos and Jurkat J16 cells with IC50 values of 6.6 and 14.1 mM, respectively. Received 24th November 2016 Mechanistic studies indicated that compound 2 induces apoptotic cell death caused by induction of Accepted 30th December 2016 intrinsic apoptosis. Moreover, 2 potently blocks autophagy, a potential pro-survival pathway for cancer DOI: 10.1039/c6ra27306h cells. Feeding experiments with 1,8-dihydroxynaphthalene (DHN) led to an enhanced accumulation of www.rsc.org/advances daldinone B (6), which supported the proposed biogenetic pathway.