Active Removal of Space Debris Expanding Foam Application for Active Debris Removal

Total Page:16

File Type:pdf, Size:1020Kb

Active Removal of Space Debris Expanding Foam Application for Active Debris Removal Active Removal of Space Debris Expanding foam application for active debris removal Final Report Authors: M. Andrenucci, P. Pergola, A. Ruggiero Affiliation: University of Pisa - Aerospace Engineering Department - Italy ACT researcher(s): J. Olympio, L. Summerer Date: 21-02-2011 Contacts: University of Pisa Tel: +39-050-967211 Fax: +39-050-974094 e-mail: [email protected] Advanced Concepts Team Tel: +31(0)715656227 Fax: +31(0)715658018 e-mail: [email protected] Ariadna ID: 10-6411 Ariadna study type: Standard Contract Number: 4000101449/10/NL/CBi Available on the ACT website http://www.esa.int/act 1 TABLE OF CONTENTS Table Of Contents .................................................................................................................. 2 Abstract .................................................................................................................................... 4 1 Introduction .................................................................................................................... 6 1.1 Active Debris Removal ......................................................................................................... 7 1.2 Foam-Based Method ........................................................................................................... 10 1.3 Mission Scenario ................................................................................................................. 14 2 Space Environment Models .................................................................................... 15 2.1 Deorbiting Time Estimation ................................................................................................ 15 2.2 Atmospheric Models ........................................................................................................... 17 2.3 Space Debris Models ........................................................................................................... 20 2.4 The NASA90 Model............................................................................................................ 21 3 Space Debris population.......................................................................................... 23 3.1 Space Debris Lists ............................................................................................................... 23 3.2 Impact Probability ............................................................................................................... 28 3.3 Suitable Target Debris ......................................................................................................... 35 4 Optimum Foam Ball Radius .................................................................................... 38 4.1 Foam balls impact probability ............................................................................................. 39 4.2 Results and performance ..................................................................................................... 43 5 Foam Generalities ........................................................................................................ 56 5.1 Foam Classes and Characteristics ....................................................................................... 57 5.2 Foam Kinds ......................................................................................................................... 58 5.3 Polymerization and Curing .................................................................................................. 64 5.4 Composite Foams ................................................................................................................ 65 6 Foam Expansion Model ............................................................................................ 67 6.1 The Analytical Model .......................................................................................................... 68 6.2 Model Validation ................................................................................................................. 71 6.3 Pressure Dependence ........................................................................................................... 75 7 Foam Identification .................................................................................................... 77 8 Platform Preliminary Sizing .................................................................................... 81 8.1 Propulsion System Identification ........................................................................................ 82 8.2 Power and Mass Budget ...................................................................................................... 87 8.3 Chemical-Electrical Comparison......................................................................................... 90 9 Foam Nucleating System ......................................................................................... 92 2 9.1 Device Concepts .................................................................................................................. 92 9.2 Issues ................................................................................................................................... 93 9.3 Characteristics Identification ............................................................................................... 97 9.4 Preliminary Design .............................................................................................................. 98 10 Mission Analysis ...................................................................................................... 102 10.1 Mission Profile .................................................................................................................. 103 10.2 Results and Considerations................................................................................................ 104 11 Hazards and Risks ................................................................................................... 107 11.1 Ground Handling ............................................................................................................... 107 11.2 Launch ............................................................................................................................... 108 11.3 Foam Ejection.................................................................................................................... 108 11.4 Re-entry Behaviour ........................................................................................................... 112 11.4.1 Impact Model ............................................................................................................. 113 11.4.2 Small Debris Impact................................................................................................... 115 11.4.3 Results ........................................................................................................................ 116 12 Conclusions .............................................................................................................. 120 12.1 Development Roadmap ..................................................................................................... 120 Bibliography ....................................................................................................................... 122 Index Of Figures ................................................................................................................ 129 Index of Tables .................................................................................................................. 132 3 ABSTRACT Controlling the amount of space debris is widely recognised as an important task to maintaining a sustainable space access for the decades to come. This is mainly due to the high risk of collisions that can easily invalidate both human and robotic mission. The topic is on the agenda of the Scientific and Technical Subcommittee and coordinated between space agencies in the Inter- Agency Space Debris Coordination Committee (www.iadc-online.org). Most current efforts focus on debris mitigation methods. The Active Space Debris Removal System proposed in this study is based on an expanding foam system. The core idea of this method is to increase the area-to-mass ratio of these objects such that the atmospheric drag can cause their natural re-entry, thus “cleaning up” different regions in the near-Earth space. The drag augmentation system proposed does not require any docking system and just an uncontrolled re-entry can follow, thus it seems a short-term application free from the usual technological issues of these debris removal systems. The drag augmentation is suggested to be performed exploiting the characteristics of the expanding foams that can nucleate almost spherical envelopes around the debris with very limited efforts of the spacecraft in charge that has the role to carry and spray the foam. Furthermore, the same method can also be conceived as a preventive system to be directly embedded in future space artificial satellites. The key technological aspect is the specific foam kind that has to be able, amongst other aspects, to significantly expand its original volume and has to be as light as possible. This approach is demonstrated to be able to deorbit any kind of debris, but it has been proven to be particularly advantageous to deorbit up to 1 ton debris within 25 years from 900 km , of course the worst case. The actual scenario performance heavily depends on the specific foam considered and its characteristics.
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan
    Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa Japan Aerospace Exploration Agency Atsushi Nakajima Japan Aerospace Exploration Agency Abstract Geostationary orbit and low earth orbit have many artificial satellites, and the accidents of these satellites affect every area such as weather forecasts and communications. In the optical observation, the periodical change of the brightness which is caused by the type and the shape of the satellite is seen. In the case of LEO debris, since the movement is fast, it crosses the field of view in several seconds. We used an observation method to get the data of LEO debris. In case of the GEO debris, the rate of motion is slow in comparison with LEO debris. Fixed stars are observed by the same position on the image when the telescope is operated in sidereal tracking mode. Then, space objects are recorded on the image with streaks of light. In this paper, the observation and the detection method of light curve of geostationary orbit debris are discussed. Observing the changes of the operative satellites with some time intervals may help to detect the abnormalities and accidents of them. 1. INTRODUCTION Artificial satellites that have finished their missions and used rockets are called space debris. Most of them are not under any control. The space debris problem must be solved to perform future space development and maintain safety. Many artificial satellites indispensable for human activities circle the earth. If one of these satellites malfunctions, many human activities are impacted. An artificial satellite is monitored to control its trajectory while it is in operation.
    [Show full text]
  • Evolution of the Rendezvous-Maneuver Plan for Lunar-Landing Missions
    NASA TECHNICAL NOTE NASA TN D-7388 00 00 APOLLO EXPERIENCE REPORT - EVOLUTION OF THE RENDEZVOUS-MANEUVER PLAN FOR LUNAR-LANDING MISSIONS by Jumes D. Alexunder und Robert We Becker Lyndon B, Johnson Spuce Center ffoaston, Texus 77058 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. AUGUST 1973 1. Report No. 2. Government Accession No, 3. Recipient's Catalog No. NASA TN D-7388 4. Title and Subtitle 5. Report Date APOLLOEXPERIENCEREPORT August 1973 EVOLUTIONOFTHERENDEZVOUS-MANEUVERPLAN 6. Performing Organizatlon Code FOR THE LUNAR-LANDING MISSIONS 7. Author(s) 8. Performing Organization Report No. James D. Alexander and Robert W. Becker, JSC JSC S-334 10. Work Unit No. 9. Performing Organization Name and Address I - 924-22-20- 00- 72 Lyndon B. Johnson Space Center 11. Contract or Grant No. Houston, Texas 77058 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note I National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 I 15. Supplementary Notes The JSC Director waived the use of the International System of Units (SI) for this Apollo Experience I Report because, in his judgment, the use of SI units would impair the usefulness of the report or I I result in excessive cost. 16. Abstract The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant developments for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included.
    [Show full text]
  • ICCS24 Book of Abstracts
    ICCS24 24th International Conference on Composite Structures Faculty of Engineering, University of Porto, Portugal 14-16 June 2021 Book of Abstracts António J.M. Ferreira Carlos Santiuste Nicholas Fantuzzi Michele Bacciocchi Ana Neves ii Welcome Address The abstracts collected in this book represent the proceedings of the conference ICCS24 (24th International Conference on Composite Structures) , 14-16 June 2021. This book aims to help you to follow this Event in a timely and organized manner. Papers are selected by the organizing committee to be presented in virtual/phisical format. Such arrangement is due to the effects of the coronavirus COVID-19 pandemic. The event, held at FEUP-Faculty of Engineering, University of Porto (Portugal), follows the success of the first twenty-three editions of ICCS. As the previous ones, this event represents an opportunity for the composites community to discuss the latest advances in the various topics in composite materials and structures. Conference chairs António J.M. Ferreira, University of Porto, Portugal Carlos Santiuste, Universidad Carlos III de Madrid, Spain Nicholas Fantuzzi, University of Bologna, Italy Michele Bacciocchi, University of San Marino, San Marino Ana Neves, University of Porto, Portugal iii iv Contents Welcome Address iii Abstracts 1 Additive Manufacturing .................................1 Influence of Process Parameters in Fused Deposition Modeling for Fabrication of Continuous fiber reinforced PLA composites (Strahinja Milenković; Nenad Grujović; Cristiano Fragassa; Vukašin Slavković; Nikola Palić; Fatima Živić) ......1 Evaluating the recycling potential of additively manufactured carbon fiber rein- forced PA 6 (Lohr, Christoph; Trauth, Anna; Brück, Bastian; Leher, Sophia; Weiden- mann, Kay) .....................................2 Statistical-based optimization of mechanical performance in FFF-printed un- reinforced and short-carbon-fiber-reinforced PEEK (S.
    [Show full text]
  • SPHERES Interact - Human-Machine Interaction Aboard the International Space Station
    SPHERES Interact - Human-Machine Interaction aboard the International Space Station Enrico Stoll Steffen Jaekel Jacob Katz Alvar Saenz-Otero Space Systems Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge Massachusetts, 02139-4307, USA [email protected] [email protected] [email protected] [email protected] Renuganth Varatharajoo Department of Aerospace Engineering University Putra Malaysia 43400 Selangor, Malaysia [email protected] Abstract The deployment of space robots for servicing and maintenance operations, which are tele- operated from ground, is a valuable addition to existing autonomous systems since it will provide flexibility and robustness in mission operations. In this connection, not only robotic manipulators are of great use but also free-flying inspector satellites supporting the oper- ations through additional feedback to the ground operator. The manual control of such an inspector satellite at a remote location is challenging since the navigation in three- dimensional space is unfamiliar and large time delays can occur in the communication chan- nel. This paper shows a series of robotic experiments, in which satellites are controlled by astronauts aboard the International Space Station (ISS). The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) were utilized to study several aspects of a remotely controlled inspector satellite. The focus in this case study is to investigate different approaches to human-spacecraft interaction with varying levels of autonomy under zero-gravity conditions. 1 Introduction Human-machine interaction is a wide spread research topic on Earth since there are many terrestrial applica- tions, such as industrial assembly or rescue robots. Analogously, there are a number of possible applications in space such as maintenance, inspection and assembly amongst others.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • High Surface Area Graphene Foams by Chemical Vapor Deposition
    High Surface Area Graphene Foams by Chemical Vapor Deposition Simon Drieschner1, Michael Weber1, J¨orgWohlketzetter1, Josua Vieten1, Evangelos Makrygiannis1, Benno M. Blaschke1, Vittorio Morandi2, Luigi Colombo3, Francesco Bonaccorso4, and Jose A. Garrido5;6 1Walter Schottky Institut und Physik-Department, Technische Universit¨atM¨unchen, Am Coulombwall 4, 85748 Garching, Germany 2CNR-IMM via Gobetti 101, 40129 Bologna, Italy 3Analog Technology Development, Texas Instruments 13121 TI Blvd MS-367, Dallas, TX 75243, USA 4Istituto Italiano di Tecnologia, Graphene Labs Via Morego 30, 16163 Genova, Italy 5ICN2 { Catalan Institute of Nanoscience and Nanotechnology, Barcelona Institute of Science and Technology and CSIC, Campus UAB, 08193 Bellaterra, Spain 6ICREA, Instituci´oCatalana de Recerca i Estudis Avan¸cats,08070 Barcelona, Spain E-mail: [email protected] Abstract. Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 µm.
    [Show full text]
  • Space Debris
    IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Preparation of a Novel Structured Catalyst Based on Aligned Carbon
    Catalysis Today 110 (2005) 47–52 www.elsevier.com/locate/cattod Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor Ya-huei Chin, Jianli Hu, Chunshe Cao, Yufei Gao, Yong Wang * Institute of Interfacial Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA Available online 13 October 2005 Abstract A novel microstructured catalyst based on aligned multiwall carbon nanotube arrays was synthesized and tested for Fischer-Tropsch synthesis (FTS) reaction in a microchannel reactor. Fabrication of such a structured catalyst first involved metal organic chemical vapor deposition (MOCVD) of a dense Al2O3 thin film over FeCrAlY foam to enhance the adhesion between ceramic-based catalyst and metal substrate. Aligned multiwall carbon nanotubes were deposited uniformly over the substrate by controlled catalytic decomposition of ethylene. These nanotube bundles were directly attached to FeCrAlY foam through a submicron layer of oxide thin film. Coating the outer surfaces of these nanobundles with an active catalyst layer forms a unique hierarchical structure with fine interstitials between the carbon nanotube bundles. The microstuctural catalyst possessed superior thermal conductivity inherent from carbon nanotube, which allows efficient heat removal from catalytic active sites during exothermic FTS reaction. The concept was tested and demonstrated in a microchannel fixed bed FTS reactor. FTS turn-over activity was found to enhance by a factor of four owing to potential improvement in mass transfer in the unique microstructure. Furthermore, improved temperature control with the carbon nanotube arrays also allows the Fischer-Tropsch synthesis being operated at temperatures as high as 265 8C without reaction runaway.
    [Show full text]
  • Elastomeric Foam Systems for Novel Mechanical Properties and Soft
    ELASTOMERIC FOAM SYSTEMS FOR NOVEL MECHANICAL PROPERTIES AND SOFT ROBOT PROPRIOCEPTION A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ilse Mae Van Meerbeek December, 2018 © 2018 Ilse Mae Van Meerbeek ELASTOMERIC FOAM SYSTEMS FOR NOVEL MECHANICAL PROPERTIES AND SOFT ROBOT PROPRIOCEPTION Ilse Mae Van Meerbeek, Ph.D. Cornell University 2018 Soft materials have enabled the fabrication of novel robots with interesting and complex capabilities. The same properties that have enabled these innovations—continuous deformation, elasticity, and low elastic moduli—are the same properties that make soft robotics challenging. Soft robots have limited load-bearing capabilities, making it difficult to use them when manipulation of heavy objects is needed, for example. The ability for soft robots to deform continuously makes it difficult to model and control them, as well as impart them with adequate proprioception. This dissertation presents work that attempts to address these two main challenges by increasing load-bearing ability and improving sensing. I present a composite material comprising an open-cell foam of silicone rubber infiltrated with a low melting-temperature metal. The composite has two stiffness regimes—a rigid regime at room temperature dominated by the solid metal, and an elastomeric regime at above the melting temperature of the metal, which is dictated by the silicone. I characterize the mechanical properties of the composite material and demonstrate its ability to hold different shapes, self-heal, and actuate using shape memory. In an advance for soft robotic sensing, I present a silicone foam embedded with optical fibers that can detect when it is being bent or twisted.
    [Show full text]
  • Aerogel Background Slides
    Aerogels Background Information Version 052917.1 Overview The following slides present background information on aerogel and its role in nanotechnology. They may be presented as part of a lecture introducing the Aerogel activity. Aerogel’s nickname: “Solid blue smoke” Aerogel resembles a hologram. Is it there or not? Aerogel is a highly porous, solid material. Aerogel has the lowest density of any solid known to man. It is one thousand times less dense than glass. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California Aerogel is a Product of Nanotechnology Aerogels are made of 10nm silica spheres. They weigh only slightly more than air. In fact, one form is 99.8% air. About 8,000 of these air Scanning electron microscope image of aerogel bubbles would fit across a single human hair Why is Aerogel Blue? The size of the air bubbles is similar in size to the molecules in air and the air pockets in glaciers. They all scatter blue light more than red, making them look blue. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California Gray Glacier, Torres del Paine National Park Chile How is Aerogel Made? • Labs make aerogels by suspending silicon dioxide in alcohol and water to form a gel. • The liquid is removed with carbon dioxide under high pressure and temperature. • Aerogels are expensive to make. Extreme Physical Properties of Aerogel Property Silica Aerogel Silica Glass Density (kgm3) 5-200 2300 Specific Surface area 500-800 0.1 (m2/g) Optical Transmission 90% 99% at 632.8nm
    [Show full text]