Comisión Técnica Mixta Del Frente Marítimo

Total Page:16

File Type:pdf, Size:1020Kb

Comisión Técnica Mixta Del Frente Marítimo ISSN 1015-3233 COMISIÓN TÉCNICA MIXTA DEL FRENTE MARÍTIMO Impreso en 2019 en PRONTOGRÁFICA Cerro Largo 850 - Tel.: 2902 3172 Montevideo Uruguay E-mail: [email protected] ii ISSN 1015-3233 COMISIÓN TÉCNICA MIXTA DEL FRENTE MARÍTIMO www.ctmfm.org FRENTE MARÍTIMO VOLUMEN 26 - ABRIL 2019 iii Index INTRODUCTION 3 STUDY AREA 4 MATERIALS AND METHODS 6 RESULTS 8 SYSTEMATIC ACCOUNT 12 List of species by systematic order. Symbols preceding species denotes: ►listed by Boschi et al. (1992); ● listed by Zolessi and Philippi (1995); † very dubious or incorrect reports on both lists ● Aristaeopsis edwardsiana 12 Plesiopenaeus armatus 12 Pseudaristeus speciosus 13 Benthesicymus brasiliensis 13 Gennadas brevirostris 13 Gennadas gilchristi 13 Gennadas tinayrei 13 Gennadas valens 14 ►● Artemesia longinaris 14 Funchalia villosa 15 ● Funchalia woodwardi 15 ● Parapenaeus americanus 15 Penaeopsis serrata 16 †● Penaeus brasiliensis 16 ● Penaeus notialis 16 ►● Penaeus paulensis 17 Farfantepenaeus paulensis 17 ● Penaeus schmitti 17 iv ● Xiphopenaeus kroyeri 17 ►● Pleoticus muelleri 18 Solenocera necopina 19 ● Belzebub faxoni 19 Allosergestes pectinatus 19 Allosergestes sargassi 20 Deosergestes corniculum 20 Deosergestes curvatus 20 Deosergestes disjunctus 20 ►● Eusergestes antarcticus 20 Gardinerosergia splendens 21 Neosergestes edwardsii 21 Parasergestes armatus 21 Parasergestes vigilax 22 ►● Peisos petrunkevitchi 22 Petalidium foliaceum 23 ►● Phorcosergia potens 24 Prehensilosergia prehensilis 25 ● Sergestes atlanticus 25 Sergia Stimpson 25 Sergia laminata 25 ►● Pasiphaea acutifrons 26 Pasiphaea barnardi 26 Pasiphaea dofleini 26 Pasiphaea rathbunae 26 Pasiphaea scotiae 26 v ► Acanthephyra pelagica 27 Acanthephyra quadrispinosa 28 Systellaspis debilis 28 Nematocarcinus lanceopes 29 Nematocarcinus longirostris 30 Nematocarcinus tenuipes 31 Campylonotus arntzianus 32 ► Campylonotus capensis 33 ►● Campylonotus semistriatus 34 ► Campylonotus vagans 35 Palaemon macrodactylus 36 northropi 37 ►● Alpheus puapeba 37 Alpheus pouang 38 ► Betaeus lilianae 38 ► Betaeus truncatus 39 ► Chorismus antarcticus 39 ► Chorismus tuberculatus 40 Exhippolysmata oplophoroides 40 ►● Latreutes parvulus 40 ►● Merhippolyte americana 40 ► Nauticaris magellanica 41 Eualus amandae 42 Eualus dozei 42 Eualus kinzeri 42 Lebbeus antarcticus 42 vi Processa guyanae 43 ►● Processa hemphilli 43 Processa profunda 43 ►● Austropandalus grayi 44 ►● Pandalopsis ampla 45 Pantomus parvulus 46 Stylopandalus richardi 46 ►● Aegaeon boschii 47 ● Lissosabinea cf tridentata 48 ► Notocrangon antarcticus 48 ● Philoceras gorei 48 ►● Metanephrops rubellus 49 ►● Thymops birsteini 50 Thymops takedai 50 Thymopsis nilenta 51 ►Anacalliax argentinensis 51 ► Notiax brachyophthalma 51 Notiax santarita 51 ● Poti gaucho 52 ►● Sergio mirim 52 Upogebia australis 52 ► Scyllarides deceptor 53 Pentacheles validus 54 Stereomastis suhmi 55 ► Munida gregaria 56 ● Munida iris 57 vii † Munida flinti 57 † Munida forceps 57 † Munida irrasa 57 ► Munida spinosa 58 Liopetrolisthes patagonicus 58 ►● Pachycheles chubutensis 59 ►● Pachycheles laevidactylus 60 ● Polyonyx gibbesi 61 ● Porcellana sayana 61 ►● Blepharipoda doelloi 62 ►† Emerita analoga 63 ►● Emerita brasiliensis 64 ► Lithodes confundens 65 ►● Lithodes santolla 66 ► Lithodes turkayi 67 Neolithodes diomedeae 68 Neolithodes yaldwyni 68 ► Paralomis anamerae 68 Paralomis birsteini 68 ►● Paralomis formosa 69 ► Paralomis granulosa 70 Paralomis longidactylus 70 ► Paralomis spinosissima 71 Paralomis tuberipes 72 Paralomis zealandica 72 ►● Loxopagurus loxochelis 73 viii ► Paguristes foresti 73 ►● Paguristes robustus 74 Paguristes scarabinoi 74 ►● Pagurus comptus 74 ►● Pagurus criniticornis 75 ►● Pagurus exilis 75 ► Pagurus forceps 75 ● Pagurus leptonyx 75 †● Pagurus provenzanoi 76 ● Pagurus trichocerus 76 ►● Propagurus gaudichaudii 77 ► Sympagurus dimorphus 78 ● Homola minima 79 ● Latreilla willamsi 79 ● Hepatus pudibundus 80 ► Acanthocyclus albatrossis 80 ►● Corystoides abbreviatus 81 ● Acanthocarpus alexandri 82 Acanthocarpus meridionalis 82 ►● Peltarion spinosulum 83 Metacarcinus edwardsii 84 Ethusina 85 Ethusina abyssicola 85 ►● Danielethus crenulatus 86 ►● Danielethus patagonicus 87 ● Chasmocarcinus typicus Rathbun 88 ix ● Neopilumnoplax lipkeholthuisi 88 ► Ebalia rotundata 88 ● Myropsis quinquespinosa 89 ● Persephona mediterranea 89 ►† Leucosia planata 89 ►● Leucippa pentagona 90 ●† Taliepus dentatus and T. marginatus 91 Lepteces ornatus 91 ►● Libidoclea granaria 92 ● Libinia ferreirae 93 ►● Libinia spinosa 93 ►● Pelia rotunda 94 ►● Rochinia gracilipes 95 ● Stenocionops furcatus 96 ● Anisonotus atlanticus 96 ► Eurypodius latreillii 97 Eurypodius longirostris 98 ● Stenorhynchus seticornis 98 ►● Collodes rostratus 99 ►● Leurocyclus tuberculosus 100 Pyromaia tuberculata 101 Amphithrax besnardi 102 Hyas araneus 102 ► Halicarcinus planatus 103 ● Mesorhoea sexspinosa 104 ● Piloslambrus guerinii 104 x ● Spinolambrus fraterculus 104 ● Spinolambrus meridionalis 104 ►● Pilumnus reticulatus 105 Carcinus maenas 106 ►● Ovalipes trimaculatus 107 ►● Chaceon notialis 108 ►● Coenophthalmus tridentatus 109 ● Arenaeus cribrarius 110 ►● Callinectes sapidus 110 ● Callinectes danae 111 ● Achelous spinicarpus 111 ● Achelous spinimanus 111 ►● Pilumnoides hassleri 112 ● Cyrtoplax spinidentata 113 ►● Acantholobulus schmitti 113 ● Eurypanopeus depressus 114 ● Hexapanopeus paulensis 115 ►● Panopeus meridionalis 115 ● Tetraxanthus rathbunae 116 Speocarcinus dentatus 116 ● Actaea acantha 116 ● Pachygrapsus transversus 117 ● Planes major 117 Planes marinus 117 ►● Armases rubripes 118 ●† Armases miersii 118 xi ►● Neohelice granulata 119 ►● Cyrtograpsus angulatus 120 ►● Cyrtograpsus altimanus 121 ►● Cyrtograpsus affinis 122 ● Ocypode quadrata 122 ►● Leptuca uruguayensis 123 ►● Austinixa patagoniensis 124 ► Pinnixa brevipollex 124 ● Pinnixa chaetopterana 124 ►● Pinnixa rapax 125 ● Pinnixa sayana 125 Pinnixa valdiviensis 125 ► Calyptraeotheres garthi 126 ► Dissodactylus crinitichelis 127 ► Fabia emiliai 127 ► Pinnaxodes chilensis 127 ►● Tumidotheres maculatus 128 DISCUSSION 129 SUPPLEMENTARY ONLINE FILES 137 ACKNOWLEDGEMENTS 137 REFERENCES 138 xii Prólogo Entre los días 21 y 23 de noviembre de 2017 se llevó a cabo en Tigre, Provincia de Buenos Aires, el 18º Simposio Científico de la Comisión Técnica Mixta del Frente Marítimo. En esa oportunidad el Simposio estuvo dedicado a conmemorar el 40º aniversario de la creación de la Comisión Técnica Mixta del Frente Marítimo (CTMFM) que tuvo lugar el 16 de agosto de 1976 y de su primera Sesión Plenaria, que tuvo lugar el 4 de febrero de 1977. El volumen 25 de FRENTE MARÍTIMO publicado en 2018 contiene, con la única excepción de la obra que aquí prologamos, todos los trabajos presentados en el Simposio que fueran oportunamente enviados al Comité Editor y aceptados para su publicación. El presente volumen se destina entonces, en exclusividad, a publicar la mencionada obra: el Catalogo anotado y bibliografía de los camarones, langostas, cangrejos y formas afines, estuarinas y marinas (Crustacea: Decapoda), de Argentina y Uruguay (Océano Atlántico Sudoccidental). Hace 27 años la CTMFM publicó el Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina (Boschi et al., 1992) registrados en aguas costeras, de plataforma y de profundidad, que incluía 93 especies de decápodos. Poco después se publicó una lista de los decápodos de Uruguay (Zolessi y Philippi, 1995) con 107 especies. Desde entonces, el advenimiento de técnicas moleculares, la revalorización de la taxonomía y el incremento de las invasiones biológicas debido al intercambio comercial y al cambio climático global, hacen necesaria la revisión de los trabajos anteriores. Este Catálogo incluye la adición y remoción de especies, una actualización de la taxonomía y sistemática de los grupos involucrados, además de brindar listas bibliográficas sobre los grupos y especies más importantes. No dudamos que será un valiosísimo material de referencia para todos los científicos, técnicos y público interesados en la biogeografía y sistemática de crustáceos. xiii Editorial Committee - Dr. Marcos Domingos Siqueira Tavares - Prof. Fabrizio Scarabino xv Annotated catalogue and bibliography of marine and estuarine shrimps, lobsters, crabs and their allies (Crustacea: Decapoda) of Argentina and Uruguay (Southwestern Atlantic Ocean) Annotated catalogue and bibliography of marine and estuarine shrimps, lobsters, crabs and their allies (Crustacea: Decapoda) of Argentina and Uruguay (Southwestern Atlantic Ocean) Eduardo D. Spivak1, Nahuel E. Farías1, Emiliano H. Ocampo1, Gustavo A. Lovrich2 y Tomás A. Luppi1 1Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional de Mar del Plata (UNMdP). [email protected] 2Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) SUMMARY: Twenty seven years ago, the Co- shelf and slope, the contiguous abysal plains, misión Técnica Mixta del Frente Marítimo pu- the Malvinas, Georgias del Sur and Sandwich del blished a catalogue of marine decapod and Sur Islands and the Scotia Sea. stomatopod crustaceans registered in coasts, continental shelf and slope, and deep waters of A total of 211 species of decapod crustaceans Argentina (Boschi et al., 1992), that included 93 are listed in this catalogue: 78 shrimps and species of decapods. Later, a list of decapods of prawns (Dendrobranchiata and Caridea), 13 Uruguay
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • GROWTH of Litopenaeus Schmitti (BURKENROAD, 1936) and Farfantepenaeus Paulensis (PEREZ-FARFANTE, 1967) SHRIMP REARED in RECIRCULATION CULTURE SYSTEM
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 62(4):323-330, 2014 GROWTH OF Litopenaeus schmitti (BURKENROAD, 1936) AND Farfantepenaeus paulensis (PEREZ-FARFANTE, 1967) SHRIMP REARED IN RECIRCULATION CULTURE SYSTEM Marcelo Barbosa Henriques*, Pedro Mestre Ferreira Alves, Oscar José Sallée Barreto and Marcelo Ricardo de Souza Instituto de Pesca - Secretaria de Agricultura e Abastecimento do Estado de São Paulo (Av. Bartolomeu de Gusmão, 192, 11030-906 Santos, SP, Brasil) *Corresponding author: [email protected] http://dx.doi.org/10.1590/S1679-87592014078806204 A B S T R A C T The Litopenaeus schmitti and Farfantepenaeus paulensis shrimp captured in estuaries are marketed as live bait for recreational fishing. As an alternative to shrimp extractive activities, the authors evaluated the rearing of these species in a recirculation culture system. For each species, the grow-out study was carried out in two 120-day production cycles, using 3,300 juveniles of an average length of 25 mm and weight of 0.9 grams in each, distributed in 12 tanks of 1,500 liters and 1.32 m2, at a population density of 208.3 shrimp per m2. The growth parameters were obtained using the von Bertalanffy model based on the length (mm) and age (weeks) data. The adjustments were made in the R environment of the non-linear least-square method. The von Bertalanffy growth model showed a proper fit, with determination coefficients of 0.900 for L. schmitti and 0.841 for F. paulensis. The values of L∞ and k were 172.66 and 0.027 mm for L. schmitti and 110.13 mm and 0.050 for F.
    [Show full text]
  • Metanephrops Challengeri)
    Population genetics of New Zealand Scampi (Metanephrops challengeri) Alexander Verry A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity. Victoria University of Wellington 2017 Page | I Abstract A fundamental goal of fisheries management is sustainable harvesting and the preservation of properly functioning populations. Therefore, an important aspect of management is the identification of demographically independent populations (stocks), which is achieved by estimating the movement of individuals between areas. A range of methods have been developed to determine the level of connectivity among populations; some measure this directly (e.g. mark- recapture) while others use indirect measures (e.g. population genetics). Each species presents a different set of challenges for methods that estimate levels of connectivity. Metanephrops challengeri is a species of nephropid lobster that supports a commercial fishery and inhabits the continental shelf and slope of New Zealand. Very little research on population structure has been reported for this species and it presents a unique set of challenges compared to finfish species. M. challengeri have a short pelagic larval duration lasting up to five days which limits the dispersal potential of larvae, potentially leading to low levels of connectivity among populations. The aim of this study was to examine the genetic population structure of the New Zealand M. challengeri fishery. DNA was extracted from M. challengeri samples collected from the eastern coast of the North Island (from the Bay of Plenty to the Wairarapa), the Chatham Rise, and near the Auckland Islands. DNA from the mitochondrial CO1 gene and nuclear ITS-1 region was amplified and sequenced.
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Occurrence and Distribution of the Planktonic Shrimps of the Genus Lucifer in the EEZ of India
    J. mar. biol. Ass. India, 47 (1) : 20 - 30, Jan. - June, 2005 Occurrence and distribution of the planktonic shrimps of the genus Lucifer in the EEZ of India Geetha Antony Central Marine Fisheries Research Institute, Cochin - 682 018, India Abstract The distribution and abundance of decapod shrimps of the family Luciferidae De Haan, 1849 under the super family Sergestoidea Dana, 1852 in the Exclusive Economic Zone of India were studied based on 918 zooplankton samples collected during 37 cruises of FORV Sugar Sampada. All the seven species recorded elsewhere in the world namely, L. @pus H. Milne Edwards, L. hnnseni Nobili, L. penicillifer Hansen, L. faxoni Borradaile, L. chacei Bowman, L, intermedius Hansen and L. orientalis Hansen have been found to occur in the Indian EEZ of which the last three are new records. L. penicillifer is the predominant species in the eastern Arabian Sea and the Bay of Bengal and L. typus in the island ecosystems of Lakshadweep and Andaman- Nicobar. The neretic region of the Indian EEZ up to 50 m depth supports 51% of these shrimps, the mid-shelf between 50 and lOOm harbours 29%, whereas 12% occur in the outer shelf (100 and 200m) and 8% in the deep zone (>200 m). The presence of L.penicillifer in the eastern Arabian Sea and L.hanseni in the Lakshadweep waters is reported for the first time. Matrix of correlation revealed the highest co-occurrence of these shrimps in the Andaman-Nicobar waters wherein six of the Lucifer species co-exist. Diagnostic characters used in species identi- fication are given and illustrated.
    [Show full text]
  • Decapod Crustacean Assemblages Off the West Coast of Central Italy (Western Mediterranean)
    SCIENTIA MARINA 71(1) March 2007, 19-28, Barcelona (Spain) ISSN: 0214-8358 Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean) EMANUELA FANELLI 1, FRANCESCO COLLOCA 2 and GIANDOMENICO ARDIZZONE 2 1 IAMC-CNR Marine Ecology Laboratory, Via G. da Verrazzano 17, 91014 Castellammare del Golfo (Trapani) Italy. E-mail: [email protected] 2 Department of Animal and Human Biology, University of Rome “la Sapienza”, V.le dell’Università 32, 00185 Rome, Italy. SUMMARY: Community structure and faunal composition of decapod crustaceans off the west coast of central Italy (west- ern Mediterranean) were investigated. Samples were collected during five trawl surveys carried out from June 1996 to June 2000 from 16 to 750 m depth. Multivariate analysis revealed the occurrence of five faunistic assemblages: 1) a strictly coastal community over sandy bottoms at depths <35 m; 2) a middle shelf community over sandy-muddy bottoms at depths between 50 and 100 m; 3) a slope edge community up to 200 m depth as a transition assemblage; 4) an upper slope community at depths between 200 and 450 m, and 5) a middle slope community at depths greater than 450 m. The existence of a shelf- slope edge transition is a characteristic of the western and central Mediterranean where a Leptometra phalangium facies is found in many areas at depths between 120 and 180 m. The brachyuran crab Liocarcinus depurator dominates the shallow muddy-sandy bottoms of the shelf, while Parapenaeus longirostris is the most abundant species from the shelf to the upper slope assemblage.
    [Show full text]
  • Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
    Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • (Marmara Sea) and Ecological Characteristics of Their Habitats
    RESEARCH ARTICLE Eur J Biol 2017; 76(1): 20-5 Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats Begum Ayfer, Husamettin Balkis, Aysegul Mulayim* Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Please cite this article as: Ayfer B, Balkis H, Mulayim A. Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats. Eur J Biol 2017; 76(1): 20-5. ABSTRACT We have performed series of analyses to identify decapod crustaceans inhabiting the littoral zone of the Marmara Island and to study specific ecological characteristics of the habitat. Samples of decapod crustaceans species were collected from 12 stations (6 onshore, 6 offshore) on May 12-17, 2008 and November 17-22, 2008. A total of 17 species and 1199 specimens of decapod crustaceans were recorded. Eigth species (A. lacazei, N. norvegicus, P. bluteli, P. longimana, P. platycheles, D. pugilator, D. personata and L. vernalis) have been reported in the littoral zone of Marmara Island for the first time in this study. Also our study also sheds light on some ecological properties (temperature, salinity, dissolved oxygen) of the habitats of the species from the littoral zone of the Marmara Island. Keywords: Ecology, decapoda, crustacea, Marmara Island, The Sea of Marmara INTRODUCTION The first study at the island was carried out by Ostrou- moff (3,4) followed by studies by Okuş (5), Yüksek (6) The Archipelago in the Sea of Marmara consisting of and Balkıs (7). small and large islands located southwest of the Sea of Marmara and the northwest of the Kapıdağ Peninsula MATERIALS AND METHODS are referred to as the Islands of Marmara.
    [Show full text]
  • BIOLÓGICA VENEZUELICA Es Editada Por Dirección Postal De Los Mismos
    7 M BIOLÓGICA II VENEZUELICA ^^.«•r-íí-yííT"1 VP >H wv* "V-i-, •^nru-wiA ">^:^;iW SWv^X/^ií. UN I VE RSIDA P CENTRAL DÉ VENEZUELA ^;."rK\'':^>:^:;':••'': ; .-¥•-^>v^:v- ^ACUITAD DE CIENCIAS INSilTÜTO DÉ Z00LOGIA TROPICAL: •RITiTRnTOrr ACTA BIOLÓGICA VENEZUELICA es editada por Dirección postal de los mismos. Deberá suministrar­ el Instituto de Zoología Tropical, Facultad, de Ciencias se en página aparte el título del trabajo en inglés en de la Universidad Central de Venezuela y tiene por fi­ caso de no estar el manuscritp elaborado en ese nalidad la publicación de trabajos originales sobre zoo­ idioma. logía, botánica y ecología. Las descripciones de espe­ cies nuevas de la flora y fauna venezolanas tendrán Resúmenes: Cada resumen no debe exceder 2 pági­ prioridad de publicación. Los artículos enviados no de­ nas tamaño carta escritas a doble espacio. Deberán berán haber sido publicados previamente ni estar sien­ elaborarse en castellano e ingles, aparecer en este do considerados para tal fin en otras revistas. Los ma­ mismo orden y en ellos deberá indicarse el objetivo nuscritos deberán elaborarse en castellano o inglés y y los principales resultados y conclusiones de la co­ no deberán exceder 40 páginas tamaño carta, escritas municación. a doble espacio, incluyendo bibliografía citada, tablas y figuras. Ilustraciones: Todas las ilustraciones deberán ser llamadas "figuras" y numeradas en orden consecuti­ ACTA BIOLÓGICA VENEZUELICA se edita en vo (Ejemplo Fig. 1. Fig 2a. Fig 3c.) el número, así co­ cuatro números que constituyen un volumen, sin nin­ mo también el nombre del autor deberán ser escritos gún compromiso de fecha fija de publicación.
    [Show full text]