The role of as a net sink or source of carbon dioxide in Southwestern Gulf of

Sang Rul Park, Joseph Stachelek, Kenneth Dunton

School of Marine Biomedical Sciences, Jeju National University (2012-10-19 PICES)

2 Salt marsh ?

• Transition zones between the ocean and the land

# Functions and values - High primary productivity - Variable habitat high biodiversity - Nutrients recycling and filtration - Wave and current energy damping

Thus, one of the most valuable ecosystems (Costanza et al. 1997) Carbon sequestration in Salt marsh

Area Average rate Component Million km2 Ton C ha-1 y-1 0.17 1.39

Salt Marsh 0.40 1.51

Seagrass 0.33 0.83

*C = Organic carbon

(Nellemann et al. 2009) Salt marshes decline

(Nellemann et al. 2009)

- Disappeared about 50% of marsh systems in U.S. (Kennish 2001) 5 Nueces River Delta

- A part of the Nueces estuary system in Southwestern Gulf of Mexico (5700 ha) Nueces River Delta

- frutescens (Bf), (Bm), and (Sv)

- 50% of vegetation cover

- Since 1940, reduced freshwater input (over 99%)

- Hypersalinity and water stress

- Since 1940s, decline of 30-40% of net aerial primary production (Ward 1987, Solis 1994)

- But, little photosynthetic research Objectives Quantify the seasonal 451 photosynthetic characteristics of marsh

Photosynthetic responses to environmental stresses under natural conditions

Construct a carbon budget for the Nueces River Delta

Hypothesis

The role of salt marsh as a net sink or source of CO2 depends on season Study sites

467

463 451

450

270

Google earth Experimental design

- 25-m transect line Sv, Bf, Bm, Ml - All stations were Bf classified by vegetation Sv assemblages Bf

- Station 451 (4 zones) - Two dominant Borrichia furtescens zones, - One dominant Salicornia virginica zone and - One mixed zone (Borrichia frutescens, Salicornia virginica, Batis maritima, Monanthochloe littoralis) 10 Data collection # Photosynthesis and respiration - Using LI-6400 portable gas exchange system with conifer chamber

- Between 10:00 and 15:00

- For respiration, the chamber was shaded by a black plastic bag

# Soil respiration - Using LI-6400 portable gas exchange system with soil chamber at bare bed and inside canopy

# Environmental factors - Salinity, temperature and precipitation A 40 Average temp. Environmental Maximum temp. C) o factors 30

20 # Temperature - Seasonal trend 10

( temperature Air 0

# Precipitation JJASONDJFMAMJ 400 400 B - Very low Precipitation Evapotranspiration

300 300 # Evapotranspiration - highest during summer 200 200 - lowest during fall-winter 100 100

Precipitation (mm) Evapotranspiration(mm) 0 0 JJASONDJFMAMJ 2010 2011 Salinity, moisture and nutrients

Parameters Values

Salinity (PSU)

Tidal creek 4 – 35

Porewater 14 – 68

Soil moisture (%) 20 – 55

* Range Photosynthetic characteristics

Station 467 Station 463 Station 451 Station 450 Station 270 16 )

-1 A B C D E Bf s -2 12 Sv m

2 Bm

8 molCO (µ

4 area A 0

) F -1 G H I J

s 6 -2 m 2 4 molCO

(µ 2

area R 0 K L M N O 10 11.9 8

ratio 6

A:R 4

2

0 Su/10 F/10 W/11 Sp/11 Su/10 F/10 W/11 Sp/11 Su/10 F/10 W/11 Sp/11 Su/10 F/10 W/11 Sp/11 Su/10 F/10 W/11 Sp/11

*Aarea – net photosynthesis; Rarea – Respiration; Bf – B. frutescens; Sv – S. virginica; Bm – B. maritima. 25 10 2 2 Relationships between B. frutescens r = 0.25 *** B. frutescens r = 0.34 *** temperature and A, R 20 8 15 6

10 4

# Net photosynthesis 5 2

0 0 ) o ) -1 2 2 -1 - Bf (28 – 35 C) 10 S. virginica r = 0.06 ** S. virginica r = 0.30 *** s 8 s -2 -2 o 8 m - Bm (31 – 37 C) m 2 6 2

6 4 4 mol CO mol CO µ µ 2 ( 2 ( area # Respiration area A 0 0 R 2 2 - positive relationships 10 B. maritima r = 0.24 *** B. maritima r = 0.38 *** 5 8 4

6 3

4 2

2 1

0 0 10 20 30 40 50 10 20 30 40 50 Leaf temperature (oC) Leaf temperature (oC) Relationships between 20 8 A 2 D porewater salinity and A, R r = 0.12 * 15 6

10 4

5 2 ) ) -1 # Borrichia frutescens -1 0 0 s B E s -2 - Negative relationship 10 8 -2 m m 2 8 2 6

6 4 # Batis maritima 4 molCO 2 molCO µ 2 µ ( - positive relationship ( 0 0 area area C r2 = 0.19* F A 8 4 R

6 3

4 2

2 1

0 0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 Porewater salinity Porewater salinity 16 Soil respiration

8

) Inside canopy -1 Bare bed s -2 6 m 2

4 mol CO mol (µ 2 Effluex 0 Summer 2010 Fall 2010 Winter 2011 Spring 2011 Station 270 Carbon budget (calculation)

- Vegetation coverage data (P, 2007-2008) and biomass (B, 2010) - Net photosynthesis (nmol g-1 DW s-1, 10 h) and respiration (14 hour), - Soil respiration (μmol CO2 m-2 s-1, 24 hour) - Biomass per unit area (BU, g DW) = P (%) X P/B ratio (g DW / %)

Net Mol CO Area Mol CO BU 2 Res BU 2 Summer Photo m-2 d-1 (%) m-2 d-1

Batis maritima 69.4 43.3 0.108 19.9 43.3 0.043

B. frutescens 54.5 1222.8 2.399 26.5 1222.8 1.633

S. virginica 55.9 64.1 0.129 43.3 64.1 0.140

Soil respiration - - - 0.89 9.1 0.007 at bare bed Soil respiration - - - 5.78 64.3 0.321 inside canopy Total 2.636 2.145 Station 270 Carbon budget

3 )

-1 Carbon sink d -2 2

1 Exchange (mol m 2 0

Net CO Net Carbon source

-1 Summer Fall Winter Spring Conclusions

• Photosynthesis and respiration of plants - biomodal patterns and/or seasonal variations

• High temperature - inhibit or accelerate net photosynthesis or respiration

• Porewater salinity - Limitating factor of photosynthesis (B. frutescens)

• The role of salt marsh depends on season - Carbon sink (spring-fall) and carbon source (winter) 20 Further study

• Salt marsh network - and South Korea

• Blue carbon mapping in Korea - including seaweed and seagrasses Acknowledgment - Kim Jackson - Travis Bartholomew - Kelly Darnell - Dana Sjostrom - Yun Hee Kang Questions?