NOVEL BIS-QUINOLINIUM CYCLOPHANES AS Skca CHANNEL BLOCKERS

Total Page:16

File Type:pdf, Size:1020Kb

NOVEL BIS-QUINOLINIUM CYCLOPHANES AS Skca CHANNEL BLOCKERS NOVEL BIS-QUINOLINIUM CYCLOPHANES AS SKca CHANNEL BLOCKERS A thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy Degree of the University of London LEJLA ARIFHODZIC Department of Chemistry University College London September 2001 ProQuest Number: U153874 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U153874 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ACKNOWLEDGMENTS I am grateful to my supervisor. Prof C.R. Ganellin, firstly, for giving me the opportunity to do this project and for all his support and invaluable advice thereafter. A very special thank you to Mr W. Tertuik for all his help and guidance during my time at UCL. Many thanks to Prof D.H. Jenkinson for performing the biological testing and for useful discussions and to Dr A. Vinter for his assistance in molecular modelling. My thanks go to many past and present members of UCL, in particular: T.Akinleminu, A.Alic, A.E.Aliev, J.E.Anderson, D.C.H.Benton, S.Corker, C.Escolano, J.Gonzales, K.J.Hale, J.Hill, F.Lerquin, J.Maxwell, F.L.Pearce, N.Penumarty, E.Power, S.Samad, A.Stones, S.Manaziar, M.Sachi, D.Yang, C.Yingiau and P.Zunszain. I thank Department of Chemistry, UCL for the financial support. Many thanks to Jared and Alex for their understanding and assistance. I am especially grateful to my Igor for his love, devotion and patience - this project could not have been completed without his help and understanding. I would like to thank my sister Sanja and my dearest friend Sanida for their love and support. Finally, thanks to Dianijela for her understanding. / thank my dearest mum and dad for their unconditional love and support. To them I dedicate this thesis. ABSTRACT Small conductance Ca^^ activated channels (SK^J are present in many cells and thought to be involved in some pathophysiological states, including myotonic muscular dystrophy. Some of these channels are potently and selectively blocked by the naturally occurring peptidic toxin apamin, with ICso-lnM. Previous research has led to the discovery of bis-quinolinium cyclophanes as the first nanomolar non-peptidic blockers of the apamin sensitive SK^a channel. The most active compounds discovered were UCL 1684 and UCL 1848, with their structures shown below: HN NH HN NH UCL 1848 UCL 1684 In order to further explore their activity, we have altered the structure of the two compounds by introducing various substituents at the 6 and 7 positions of their quinoline rings. Whereas all the substituents introduced in UCL 1684 resulted in some loss of potency, the same substituents introduced at the position 6 or 7 of the analogue UCL 1848 seemed to be well tolerated. The influence of the addition of two Cl atoms, at positions 5 and 7 of the two quinoline rings, has also been investigated. Furthermore, changes in the activity caused by varying one or both linkers between the two quinoline rings have been studied. Here, the most interesting finding was that UCL 1684 and UCL 1848 can behave very differently when subjected to the same alteration of one of their linkers. Novel Bis-Quinolinium Cyclophanes as SKca Channel Blockers It is of great interest to synthesise radioligand for the SK^j, channel and by synthesising a series of new compounds we were able to further explore the effect o f structure alterations, as well as to produce an iodine containing analogue. Finally, it is uncertain weather the protons attached to the exocyclic N atoms of these cyclophanes can be ionised at physiological pH. In order to explore this aspect, we have attempted the synthesis of structural analogues with more readily ionisable protons. The results obtained in this thesis are supported by molecular modeling studies. Novel Bis-Quinolinium Cyclophanes as SKq^ Channel Blockers 6 CONTENTS Page Abbreviations ...................................................................................................................... 8 Table 1 ................................................................................................................................. 16 Compounds Synthesised as Part of the Thesis............................................................ 21 Chapter 1 - Introduction................................................................................ 23 General Introuction..........................................................................................................23 1.1 Voltage-Dependent Potassium Channels..............................................................26 1.1.1 Delayed Rectifier fC Channel (K d b ) .................................................26 1.1.2 Transient Outward iC Channel (K a)................................................. 28 1.1.3 Inward (Anomalous) Rectifier iC Channel (Kir) .................................31 1.1.4 The Crystal Structure o fiC Channel......................................................33 1.2 Receptor-Coupled Potassium Channels............................................................... 36 1.2.1 G Protein-gated lC Channels (including Muscarinic-activated iC Channels (Kach).............................................................................36 1.2.2 Muscarinic-inactivated FC Channels (Km)...........................................37 1.2.3 Serotonin-sensitive FC Channels (K sr)..............................................38 1.2.4 cAMP-sensitive FC Channels (Kac ) ....................................................................38 1.3 Other FC Potassium Channels...............................................................................40 1.3.1 ATP-sensitive FC Channel (Katp) .......................................................... 40 1.3.2 Cell Volume-activated FC Channel........................................................43 1.3.3 Na^-activated FC Channel (K^a)............................................................43 1.3.4 Further Information About iC Channels ..............................................44 1.4 Calcium-Activated Potassium Channels.............................................................45 1.4.1 Large Conductance Ca^^-activated FC Channels (BK)..................... 45 1.4.2 Intermediate Conductance Ca^^-activated iC Channels (IK)...........53 7 1.4.2 Voltage-independent IK channels................................................ 53 1.4.2 Voltage-dependent IK channels....................................................57 1.4.3 Small Conductance Ca^^-activated K^ Channels (SK)).......................60 1.5 Previous Studies in Our Group.............................................................................. 79 Chapter 2 - Selection of Compounds...........................................................89 Chapter 3 - Synthesis and Characterisation of Compunds.................. 99 3.1 General Synthesis.....................................................................................................99 3.2 Preparation of Commercially Unavailable Starting Materials.......................100 3.3 Preparation of Intermediates............................................................................... 109 3.4 Synthesis of Final Bis-Quinolinium Cyclophanes................................ ...........119 3.5 Characterisation of Compounds........................................................................137 Chapter 4 - Results and Discussion...........................................................145 4.1 Series I - The Effect of Substituents in Cyclophane 1 ...................................... 146 4.2 Series II - The Effect o f Substituents in Cyclophane 2 ..................................... 153 4.3 Series III - Investigation of the Linkers in Cyclophane 1 (I)........................... 158 4.4 Series IV - Investigation of the Linkers in Cyclophane I (II).........................162 4.5 Series V- Towards the Introduction of^^^f ........................................................ 166 4.6 Series VI - Investigation of the Linkers in Compounds 1 and 2 ..................... 169 4.7 Conclusions and Future Work ............................................................................. 177 Chapter 5 - Experimental..............................................................................180 5.1 Chemistry ............................................................................................................... 180 5.2 Failed Chemistry...................................................................................................262 5.3 Biological Testing_ ................................................................................................ 266 5.4 Molecular Modelling ............................................................................................269 Chapter 6 - Refererences.............................................................................. 270 Abbreviations ABBREVIATIONS Â angstrom All angiotensin II Acc Mass accurate mass ACh acethylcholine ACTH adrenocorticotropic hormone ABC ATP binding cassette ABC region part of SK channel which binds CaM ADP adenosine 5’-diphosphate
Recommended publications
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Androctonus Mauretanicus Mauretanicus
    Hindawi Publishing Corporation Journal of Toxicology Volume 2012, Article ID 103608, 9 pages doi:10.1155/2012/103608 Review Article Potassium Channels Blockers from the Venom of Androctonus mauretanicus mauretanicus Marie-France Martin-Eauclaire and Pierre E. Bougis Aix-Marseille University, CNRS, UMR 7286, CRN2M, Facult´edeM´edecine secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France Correspondence should be addressed to Marie-France Martin-Eauclaire, [email protected] and Pierre E. Bougis, [email protected] Received 2 February 2012; Accepted 16 March 2012 Academic Editor: Maria Elena de Lima Copyright © 2012 M.-F. Martin-Eauclaire and P. E. Bougis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. K+ channels selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitable and nonexcitable cells. Their activation allows the cell to repolarize after action potential firing and reduces excitability, whereas channel inhibition increases excitability. In eukaryotes, the pharmacology and pore topology of several structural classes of K+ channels have been well characterized in the past two decades. This information has come about through the extensive use of scorpion toxins. We have participated in the isolation and in the characterization of several structurally distinct families of scorpion toxin peptides exhibiting different K+ channel blocking functions. In particular, the venom from the Moroccan scorpion Androctonus ffi + + mauretanicus mauretanicus provided several high-a nity blockers selective for diverse K channels (SKCa,Kv4.x, and Kv1.x K channel families).
    [Show full text]
  • Shk Toxin: History, Structure and Therapeutic Applications for Autoimmune Diseases
    ShK toxin: history, structure and therapeutic applications for autoimmune diseases WikiJournal of Science Search this Journal Search Open access • Publication charge free • Public peer review Submit Authors Reviewers Editors About Journal Issues Resources CURRENT Editorial In preparation guidelines Upcoming This is an unpublished pre-print. It is undergoing peer review. articles Authors: Shih Chieh Chang, Saumya Bajaj, K. George Chandy Ethics statement This pre-print is undergoing public peer review Laboratory of Molecular Physiology, Infection Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological Bylaws University, Singapore First submitted: 04 January 2018 Financials Author correspondence: [email protected] Last updated: 05 January 2018 Contact Reviewer comments Last reviewed version Abstract Stichodactyla toxin (ShK) is a 35-residue basic peptide from the sea anemone Stichodactyla helianthus that blocks a number of potassium channels. An analogue of ShK called ShK-186 or Dalazatide is in human trials as Licensing: This is an open access article distributed under the Creative a therapeutic for autoimmune diseases. Commons Attribution License, which permits unrestricted use, distribution, and reproduction, provided the original author and source are credited. Key words: ShK peptide, autoimmune diseases, T cells, Kv1.3, ShK domains History Contents Stichodactyla helianthus is a sea anemone of the family Stichodactylidae. Abstract Helianthus comes from the Greek words Helios meaning sun, and anthos meaning History flower. S. helianthus is also referred to as the 'sun anemone'. It is sessile and uses potent neurotoxins for defense against its primary predator, the spiny lobster. The Structure venom contains, among other components, numerous ion channel-blocking Phylogenetic relationships of ShK and ShK domains peptides.
    [Show full text]
  • Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic
    Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic Activity Thi Tuyet Nhung Nguyen, Benjamin Folch, Myriam Letourneau, Nam Hai Truong, Nicolas Doucet, Alain Fournier, David Chatenet To cite this version: Thi Tuyet Nhung Nguyen, Benjamin Folch, Myriam Letourneau, Nam Hai Truong, Nicolas Doucet, et al.. Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic Activity. Journal of Medicinal Chemistry, American Chemical Society, 2014, 57 (6), pp.2623-33. 10.1021/jm401904q. hal-01177382 HAL Id: hal-01177382 https://hal.archives-ouvertes.fr/hal-01177382 Submitted on 14 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of a Truncated Cardiotoxin-I Analogue with Potent Insulinotropic Activity Thi Tuyet Nhung Nguyen†‡§, Benjamin Folch†∥⊥, Myriam Létourneau†§, Nam Hai Truong‡, Nicolas Doucet†∥⊥, Alain Fournier*†§, and David Chatenet*†§ † INRS−Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies Ville de Laval, Québec H7 V 1B7, QuébecCanada ‡ Vietnam Academy of Science and Technology, Institute
    [Show full text]
  • Bioactive Mimetics of Conotoxins and Other Venom Peptides
    Toxins 2015, 7, 4175-4198; doi:10.3390/toxins7104175 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Bioactive Mimetics of Conotoxins and other Venom Peptides Peter J. Duggan 1,2,* and Kellie L. Tuck 3,* 1 CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia 2 School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5042, Australia 3 School of Chemistry, Monash University, Clayton, VIC 3800, Australia * Authors to whom correspondence should be addressed; E-Mails: [email protected] (P.J.D.); [email protected] (K.L.T.); Tel.: +61-3-9545-2560 (P.J.D.); +61-3-9905-4510 (K.L.T.); Fax: +61-3-9905-4597 (K.L.T.). Academic Editors: Macdonald Christie and Luis M. Botana Received: 2 September 2015 / Accepted: 8 October 2015 / Published: 16 October 2015 Abstract: Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. Keywords: venom peptides; toxins; conotoxins; peptidomimetics; N-type calcium channel; Cav2.2 1. Introduction A wide range of species from the animal kingdom produce venom for use in capturing prey or for self-defense.
    [Show full text]
  • Molecular Simulations of Disulfide-Rich Venom Peptides With
    molecules Review Review Molecular SimulationsSimulations ofof Disulfide-RichDisulfide-Rich VenomVenom Peptides withwith IonIon ChannelsChannels andand MembranesMembranes Evelyne Deplazes 1,2 Evelyne Deplazes 1,2 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, WA 6102, Australia; [email protected] Perth, WA 6102, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia QLD 4072, Australia Academic Editor: Roberta Galeazzi Academic Editor: Roberta Galeazzi Received: 8 February 2017; Accepted: 24 February 2017; Published: date Received: 8 February 2017; Accepted: 24 February 2017; Published: 27 February 2017 Abstract:Abstract: Disulfide-richDisulfide-rich peptides isolated isolated from from the the venom venom of of arthropods arthropods and and marine marine animals animals are are a arich rich source source of of potent potent and and selective selective modulators modulators of of ion ion channels. channels. This This makes these peptides valuable leadlead moleculesmolecules forfor thethe developmentdevelopment ofof newnew drugsdrugs toto treattreat neurologicalneurological disorders.disorders. Consequently,Consequently, much effort goes into understanding understanding their their mechanis mechanismm
    [Show full text]
  • (K+) Channels: a Historical Overview of Peptide Bioengineering
    Toxins 2012, 4, 1082-1119; doi:10.3390/toxins4111082 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering Zachary L. Bergeron and Jon-Paul Bingham * Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-808-956-4864; Fax: +1-808-956-3542. Received: 14 September 2012; in revised form: 22 October 2012 / Accepted: 23 October 2012 / Published: 1 November 2012 Abstract: Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria.
    [Show full text]
  • Focus on Scorpion Toxins
    ISSN 0006-2979, Biochemistry (Moscow), 2015, Vol. 80, No. 13, pp. 1764-1799. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A. I. Kuzmenkov, E. V. Grishin, A. A. Vassilevski, 2015, published in Uspekhi Biologicheskoi Khimii, 2015, Vol. 55, pp. 289-350. REVIEW Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins A. I. Kuzmenkov*, E. V. Grishin, and A. A. Vassilevski* Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; E-mail: [email protected]; [email protected] Received June 16, 2015 Revision received July 21, 2015 Abstract—Potassium (K+) channels are a widespread superfamily of integral membrane proteins that mediate selective transport of K+ ions through the cell membrane. They have been found in all living organisms from bacteria to higher mul- ticellular animals, including humans. Not surprisingly, K+ channels bind ligands of different nature, such as metal ions, low molecular mass compounds, venom-derived peptides, and antibodies. Functionally these substances can be K+ channel pore blockers or modulators. Representatives of the first group occlude the channel pore, like a cork in a bottle, while the second group of ligands alters the operation of channels without physically blocking the ion current. A rich source of K+ channel ligands is venom of different animals: snakes, sea anemones, cone snails, bees, spiders, and scorpions. More than a half of the known K+ channel ligands of polypeptide nature are scorpion toxins (KTx), all of which are pore blockers. These com- pounds have become an indispensable molecular tool for the study of K+ channel structure and function. A recent special interest is the possibility of toxin application as drugs to treat diseases involving K+ channels or related to their dysfunction (channelopathies).
    [Show full text]
  • Role of Tonic Protein Kinase a on SK2 Channel Expression Krithika Abiraman [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2012 Role of Tonic Protein Kinase A on SK2 Channel Expression Krithika Abiraman [email protected] Recommended Citation Abiraman, Krithika, "Role of Tonic Protein Kinase A on SK2 Channel Expression" (2012). Master's Theses. 372. https://opencommons.uconn.edu/gs_theses/372 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Role of Tonic Protein Kinase A on SK2 Channel Expression Krithika Abiraman B.Tech. Anna University, 2010 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2012 i Approval APPROVAL PAGE Master of Science Thesis Role of Tonic Protein Kinase A on SK2 Channel Expression Presented by Krithika Abiraman, B.Tech. Major Advisor ___________________________________________________ George Lykotrafitis Associate Advisor ________________________________________________ Anastasios V. Tzingounis Associate Advisor ________________________________________________ Wei Sun University of Connecticut 2012 ii Acknowledgements First of all I would like to express my sincere gratitude to my major advisor, Dr. George Lykotrafitis for giving me this opportunity and for his continued support without which this thesis would not have materialized. I am grateful for his mentorship, patience and enthusiasm. Next, I would like to thank my associate advisor Dr. Anastasios Tzingounis whose advice and support has been invaluable. I greatly appreciate his guidance, advice and help on this project.
    [Show full text]
  • Siemens J and Hanack C Modulation of TRP Ion Channels by Venomous
    Modulation of TRP Ion Channels by Venomous Toxins Jan Siemens and Christina Hanack Contents 1 Introduction: Venom Biology .............................................................. 1120 2 Toxins of Venomous Organisms in Ion Channel Research and Medical Therapy ...... 1122 3 Toxins: Mode of Action ................................................................... 1124 4 Toxins Modulating TRPV1 Activity ...................................................... 1125 4.1 Vanillotoxins ......................................................................... 1125 4.2 Double-Knot Toxin .................................................................. 1127 5 Additional TRPV1-Mediated Toxin Effects .............................................. 1129 6 Toxins Affecting Other TRPs .............................................................. 1131 6.1 TRPV6 ................................................................................ 1132 6.2 TRPA1 ................................................................................ 1132 6.3 TRPCs ................................................................................ 1133 7 Discussion and Outlook .................................................................... 1133 References ..........................................................................................1136 Abstract Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins—referred to as toxins—that have evolved to specifically modulate and interfere with the function of diverse molecular targets
    [Show full text]
  • Design and Synthesis of Cysteine‑Rich Peptides
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Design and synthesis of cysteine‑rich peptides Qiu, Yibo 2014 Qiu, Y. (2016). Design and synthesis of cysteine‑rich peptides. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62189 https://doi.org/10.32657/10356/62189 Downloaded on 07 Oct 2021 19:28:23 SGT DESIGN AND SYNTHESIS OF CYSTEINE-RICH PEPTIDES Yibo Qiu School of Biological Sciences 2014 DESIGN AND SYNTHESIS OF CYSTEINE-RICH PEPTIDES Yibo Qiu School of Biological Sciences A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2014 Acknowledgements First of all, I would like to express my sincere gratitude to my supervisor Professor Ding Xiang Liu and my co-supervisor Professor James P. Tam for their great ideas and patient guidance throughout my PhD period. In this four-year study, they kept inspiring me with their immense knowledge, great motivation and trained me with a high standard. Their education makes the process an invaluable experience for me. It is my great pleasure to be one of their students and their training will always drive me to become better in my lifetime. My appreciation also goes to Professor Chuan-Fa Liu for his encouragements and technical support during this project. He always offers me practical instructions and professional advices when I need help. I also would like to thank Professor Siu Kwan Sze and Professor Kathy Qian Luo for their help on the mass spectrometry and bioassays.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0184685 A1 Zavala, JR
    US 20100184685A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184685 A1 Zavala, JR. et al. (43) Pub. Date: Jul. 22, 2010 (54) SYSTEMS AND METHODS FORTREATING Publication Classification POST OPERATIVE, ACUTE, AND CHRONIC (51) Int. Cl. PAIN USING AN INTRA-MUSCULAR A638/16 (2006.01) CATHETERADMINISTRATED A6IP 29/00 (2006.01) COMBINATION OF A LOCAL ANESTHETIC A6M 25/00 (2006.01) AND ANEUROTOXIN PROTEIN (52) U.S. Cl. ........................................... 514/12: 604/523 (57) ABSTRACT (76) Inventors: Gerardo Zavala, JR., San Antonio, TX (US); Gerardo Zavala, SR. Systems, and methods for the use of Such systems, are San Antonio, TX (US) described that allow for the administration of a combination of a Sustained release local anesthetic compound (such as bupivicaine) through a catheter based administration device Correspondence Address: and direct visualization or percutaneous injection of a neuro JACKSON WALKER LLP toxic protein compound (such as botulinum toxin) for post 901 MAIN STREET, SUITE 6000 operative and refractory treated muscle pain and discomfort DALLAS, TX 75202-3797 (US) in patients having undergone spinal Surgery and other muscle splitting or treatments aimed at improving muscle pain. The (21) Appl. No.: 12/689,381 systems utilize specific catheter-based administration proto cols and methods for placement of the catheter in association with muscles Surrounding the spine and other anatomical (22) Filed: Jan. 19, 2010 sites within the patient. The utilization of an initial bolus of a specific combination of medications (local anesthetic com Related U.S. Application Data pound and\or neurotoxic protein compound) followed by a dosage pump administration through the catheter is antici (60) Provisional application No.
    [Show full text]