Design and Synthesis of Cysteine‑Rich Peptides

Total Page:16

File Type:pdf, Size:1020Kb

Design and Synthesis of Cysteine‑Rich Peptides This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Design and synthesis of cysteine‑rich peptides Qiu, Yibo 2014 Qiu, Y. (2016). Design and synthesis of cysteine‑rich peptides. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62189 https://doi.org/10.32657/10356/62189 Downloaded on 07 Oct 2021 19:28:23 SGT DESIGN AND SYNTHESIS OF CYSTEINE-RICH PEPTIDES Yibo Qiu School of Biological Sciences 2014 DESIGN AND SYNTHESIS OF CYSTEINE-RICH PEPTIDES Yibo Qiu School of Biological Sciences A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2014 Acknowledgements First of all, I would like to express my sincere gratitude to my supervisor Professor Ding Xiang Liu and my co-supervisor Professor James P. Tam for their great ideas and patient guidance throughout my PhD period. In this four-year study, they kept inspiring me with their immense knowledge, great motivation and trained me with a high standard. Their education makes the process an invaluable experience for me. It is my great pleasure to be one of their students and their training will always drive me to become better in my lifetime. My appreciation also goes to Professor Chuan-Fa Liu for his encouragements and technical support during this project. He always offers me practical instructions and professional advices when I need help. I also would like to thank Professor Siu Kwan Sze and Professor Kathy Qian Luo for their help on the mass spectrometry and bioassays. I am grateful to Dr. Xinya Hemu, Dr. Clarence T. T. Wong, Dr. Misako Taichi and Dr. Kien Truc Giang Nguyen. They are friends, mentors and partners. Their intelligence and attitude inspired me a lot and I enjoyed working with them. In addition, I would like to thank my FYP and URECA students for their input in this project. I would like to thank Dr. Ying Liao, Dr. Adrian Guan Ji How, Dr. Quoc Thuc Phuong Nguyen, Dr. Renliang Yang and other SBS friends who helped me during my experiment. Everyone is nice and helpful to me, which makes my stay here a happy and meaningful experience. Last, I would like to thank my parents and my family for their constant support and understanding. i List of Conference Presentations 12th Chinese International Peptide Symposium, Shenyang China, 2012 Oral Presentation, Young Peptide Scientist Award ii List of Publications Qiu, Y., Wong, C. T. T., and Tam, J. P. (2012) Acid-catalyzed N-S acyl shift for preparing peptide thioesters using Fmoc chemistry. in Proceedings of the 12th Chinese International Peptide Symposium. Peptides, Chemistry and Biology. (Liu, K., Cheng, M., and Meng, Q. eds.), Chemical Industry Press, Shenyang, China 1, 22-24 Tam, J. P., Wong, C. T. T., and Qiu, Y. (2012) Engineering of proteinaceous orally active bradykinin peptide antagonists. in Proceedings of the 32nd European Peptide Symposium. Peptide 2012. (Kokotos, G., Constantinou-Kokotou, V., and Matsoukas, J. eds.), John Wiley and Sons, Athens, Greece 18, 130-131 Taichi, M., Hemu, X., Qiu, Y., and Tam, J. P. (2013) A thioethylalkylamido (TEA) thioester surrogate in the synthesis of a cyclic peptide via a tandem acyl shift. Org. Lett. 15, 2620-2623 Hemu, X., Taichi, M., Qiu, Y., Liu, D. X., and Tam, J. P. (2013) Biomimetic synthesis of cyclic peptides using novel thioester surrogates. Pept. Sci. 100, 492-501 Qiu, Y., Hemu, X., Liu, D. X., and Tam, J. P. (2014) Selective bi-directional amide bond cleavage of N-methylcysteinyl peptide. Eur. J. Org. Chem. 2014, 4370-4380 Hemu, X., Qiu, Y., and Tam, J. P. (2014) Peptide macrocyclization through amide-to- amide transpeptidation. Tetrahedron 70, 7707-7713 Nguyen, G. K. T., Wang, S., Qiu, Y., Hemu, X., Lian, Y., and Tam, J. P. (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10, 732-738 iii Table of Contents Acknowledgements ............................................................................................. i List of Conference Presentations ......................................................................ii List of Publications .......................................................................................... iii Table of Contents .............................................................................................. iv List of Figures ................................................................................................. viii List of Tables .................................................................................................. xiii Abbreviations .................................................................................................. xiv Abstract ...........................................................................................................xvii Chapter 1 Introduction...................................................................................... 1 1. Cysteine-rich peptides ...................................................................................... 1 2. Circular peptides .............................................................................................. 7 3. Cyclotides ........................................................................................................ 9 3.1 Discovery of cyclotides ............................................................................. 9 3.2 Structure and classification of cyclotides .................................................. 9 3.3 Biosynthesis of cyclotides ....................................................................... 12 3.4 Biological activities of cyclotides ........................................................... 18 4. CRPs as peptide biologics .............................................................................. 20 5. Amide-to-amide chemoenzymatic synthesis of cyclic peptides .................... 31 5.1 Intein-mediated synthesis of cyclic peptides ........................................... 31 5.2 Sortase-mediated synthesis of cyclic peptides ........................................ 35 6. Amide-to-amide chemical synthesis of cyclic peptides ................................. 37 6.1 Solid-phase peptide synthesis ................................................................. 38 6.2 Chemical ligation .................................................................................... 40 6.3 The thia zip assisted cyclization .............................................................. 48 6.4 Preparation of thioesters for cysteine thioester ligation .......................... 50 7. Oxidative folding of CRPs ............................................................................. 60 8. Aim ................................................................................................................ 66 Chapter 2 Material and methods.................................................................... 67 1. Chemical Synthesis of Cyclic CRPs .............................................................. 67 1.1 General information ................................................................................ 67 1.2 MeCys-mediated Nα-thioester formation in aqueous conditions ............ 68 iv 1.3 MeCys-mediated synthesis of cyclic peptide SFTI-1 ............................ 70 1.4 MeCys-mediated Cα-thioester formation in strongly acidic conditions .. 71 1.5 β-thiolactone formation ........................................................................... 76 1.6 TEBA-mediated Nα-thioester formation in aqueous conditions ............ 77 1.7 TEBA-mediated synthesis of cyclic peptide SFTI-1 ............................. 78 1.8 Synthesis of kalata B1 via a hydrazide linker ......................................... 79 2. Oxidative folding of CRPs ............................................................................. 81 2.1 Oxidative folding of kB1 in organic conditions ...................................... 81 2.2 1H NMR characterization ........................................................................ 81 2.3 Synthesis of ET-1 .................................................................................... 81 2.4 Oxidative folding of ET-1 in organic solvent. ........................................ 82 3. Butelase-mediated synthesis of cyclic peptides ............................................. 82 3.1 Synthesis of peptide library XXXGIR-OH ............................................. 82 3.2 Optimization of butelase-mediated ligation reaction .............................. 83 3.3 Ligation of KALVINHV and XXXGIR mediated by butelase 1 ............ 83 3.4 Synthesis of C-terminal substrate library KALVXNHV ........................ 84 3.5 Butelase 1 mediated ligation of KALVXXHV and HIGGIR ................. 84 4. Design and engineering of cysteine-rich peptides ......................................... 85 4.1 Synthesis of SFBK, BKSF ...................................................................... 85 4.2 Synthesis of SFBK-L, BKSF-L, DALK ................................................. 86 4.3 Heat and pH stability assay ..................................................................... 87 4.4 Pepsin and trypsin stability assay ............................................................ 88 4.5 Serum stability assay ............................................................................... 88 4.6 Trypsin inhibition assay .......................................................................... 88 4.7 Cytotoxicity ............................................................................................
Recommended publications
  • Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
    Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition.
    [Show full text]
  • Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins
    Biophysical Journal Volume 89 August 2005 1009–1019 1009 Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins Carolina Oliva, Vivian Gonza´lez, and David Naranjo Centro de Neurociencias de Valparaı´so, Facultad de Ciencias, Universidad de Valparaı´so, Valparaı´so, Chile ABSTRACT Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kÿconotoxin-PVIIA (kÿPVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kÿPVIIA.
    [Show full text]
  • Glycine311, a Determinant of Paxilline Block in BK Channels: a Novel Bend in the BK S6 Helix Yu Zhou Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2010 Glycine311, a determinant of paxilline block in BK channels: A novel bend in the BK S6 helix Yu Zhou Washington University School of Medicine in St. Louis Qiong-Yao Tang Washington University School of Medicine in St. Louis Xiao-Ming Xia Washington University School of Medicine in St. Louis Christopher J. Lingle Washington University School of Medicine in St. Louis Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Zhou, Yu; Tang, Qiong-Yao; Xia, Xiao-Ming; and Lingle, Christopher J., ,"Glycine311, a determinant of paxilline block in BK channels: A novel bend in the BK S6 helix." Journal of General Physiology.135,5. 481-494. (2010). http://digitalcommons.wustl.edu/open_access_pubs/2878 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Published April 26, 2010 A r t i c l e Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix Yu Zhou, Qiong-Yao Tang, Xiao-Ming Xia, and Christopher J. Lingle Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110 The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Ion Channels: Structural Basis for Function and Disease
    UC Irvine UC Irvine Previously Published Works Title Ion channels: structural basis for function and disease. Permalink https://escholarship.org/uc/item/39x307jx Journal Seminars in perinatology, 20(6) ISSN 0146-0005 Author Goldstein, SA Publication Date 1996-12-01 DOI 10.1016/s0146-0005(96)80066-8 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ion Channels: Structural Basis for Function and Disease Steve A. N. Goldstein Ion channels are ubiquitous proteins that mediate nervous and muscular function, rapid transmem- brane signaling events, and ionic and fluid balance. The cloning of genes encoding ion channels has led to major strides in understanding the mechanistic basis for their function. These advances have shed light on the role of ion channels in normal physiology, clarified the molecular basis for an expanding number of diseases, and offered new direction to the development of rational therapeutic interventions. Copyright 1996 by W.B. Saunders Company on channels reside in the membranes of all by ion channels to be divided into two broad cells and control their electrical activity. 1 mechanistic groups: those resulting from loss of These proteins underlie subtle biological events channel function and those consequent to gain such as the response of a single rod cell to a of channel function. Three exemplary patho- beam of light, the activation of a T cell by its physiological correlates are examined, Long QT antigen, and the fast block to polyspermy of a syndrome, Liddle's syndrome and pseudohypo- fertilized ovum.
    [Show full text]
  • Androctonus Mauretanicus Mauretanicus
    Hindawi Publishing Corporation Journal of Toxicology Volume 2012, Article ID 103608, 9 pages doi:10.1155/2012/103608 Review Article Potassium Channels Blockers from the Venom of Androctonus mauretanicus mauretanicus Marie-France Martin-Eauclaire and Pierre E. Bougis Aix-Marseille University, CNRS, UMR 7286, CRN2M, Facult´edeM´edecine secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France Correspondence should be addressed to Marie-France Martin-Eauclaire, [email protected] and Pierre E. Bougis, [email protected] Received 2 February 2012; Accepted 16 March 2012 Academic Editor: Maria Elena de Lima Copyright © 2012 M.-F. Martin-Eauclaire and P. E. Bougis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. K+ channels selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitable and nonexcitable cells. Their activation allows the cell to repolarize after action potential firing and reduces excitability, whereas channel inhibition increases excitability. In eukaryotes, the pharmacology and pore topology of several structural classes of K+ channels have been well characterized in the past two decades. This information has come about through the extensive use of scorpion toxins. We have participated in the isolation and in the characterization of several structurally distinct families of scorpion toxin peptides exhibiting different K+ channel blocking functions. In particular, the venom from the Moroccan scorpion Androctonus ffi + + mauretanicus mauretanicus provided several high-a nity blockers selective for diverse K channels (SKCa,Kv4.x, and Kv1.x K channel families).
    [Show full text]
  • Conotoxins That Could Provide Analgesia Through Voltage Gated Sodium Channel Inhibition
    Review Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition Nehan R. Munasinghe and MacDonald J. Christie * Received: 14 August 2015; Accepted: 19 November 2015; Published: 10 December 2015 Academic Editor: Luis Botana Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-9351-2946; Fax: +61-2-9351-3868 Abstract: Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many suffers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has immerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential. Keywords: conotoxins; toxins; NaV; ion channels; pain; analgesia; inhibition 1. Introduction Chronic pain is a major problem in the world today. The total cost of chronic pain in the United States was estimated to be between $560 and $635 billion per annum [1]. This cost is greater than cancer and heart diseases combined [1]. The current therapeutics that are available for chronic pain often provide only limited pain relief and have many side effects. Therefore, there is a great need for alternative therapies that provide analgesia to chronic pain sufferers.
    [Show full text]
  • Synergistic Antinociception by the Cannabinoid Receptor Agonist Anandamide and the PPAR-Α Receptor Agonist GW7647
    European Journal of Pharmacology 566 (2007) 117–119 www.elsevier.com/locate/ejphar Short communication Synergistic antinociception by the cannabinoid receptor agonist anandamide and the PPAR-α receptor agonist GW7647 Roberto Russo a, Jesse LoVerme b, Giovanna La Rana a, Giuseppe D'Agostino a, Oscar Sasso a, ⁎ Antonio Calignano a, Daniele Piomelli b, a Department of Experimental Pharmacology, University of Naples, Naples, Italy b Department of Pharmacology, 360 MSRII, University of California, Irvine, California 92697-4625, United States Received 9 December 2006; received in revised form 27 February 2007; accepted 6 March 2007 Available online 19 March 2007 Abstract The analgesic properties of cannabinoid receptor agonists are well characterized. However, numerous side effects limit the therapeutic potential of these agents. Here we report a synergistic antinociceptive interaction between the endogenous cannabinoid receptor agonist anandamide and the synthetic peroxisome proliferator-activated receptor-α (PPAR-α) agonist 2-(4-(2-(1-Cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2- methylpropionic acid (GW7647) in a model of acute chemical-induced pain. Moreover, we show that anandamide synergistically interacts with the large-conductance potassium channel (KCa1.1, BK) activator isopimaric acid. These findings reveal a synergistic interaction between the endocannabinoid and PPAR-α systems that might be exploited clinically and identify a new pharmacological effect of the BK channel activator isopimaric acid. © 2007 Elsevier B.V.
    [Show full text]
  • NIH Public Access Author Manuscript Eur J Pharmacol
    NIH Public Access Author Manuscript Eur J Pharmacol. Author manuscript; available in PMC 2012 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Eur J Pharmacol. 2011 November 1; 669(1-3): 71±75. doi:10.1016/j.ejphar.2011.08.001. Brain regions mediating α3β4 nicotinic antagonist effects of 18- MC on nicotine self-administration Stanley D. Glick, Elizabeth M. Sell, Sarah E McCallum, and Isabelle M. Maisonneuve Center for Neuropharmacology and Neuroscience, Albany Medical College (MC-136), 47 New Scotland Avenue, Albany, NY 12208, USA Abstract 18-methoxycoronaridine (18-MC), a putative anti-addictive agent, has been shown to decrease the self-administration of several drugs of abuse in rats. 18-MC is a potent antagonist at α3β4 nicotinic receptors. Consistent with high densities of α3β4 nicotinic receptors being located in the medial habenula and the interpeduncular nucleus, 18-MC has been shown to act in these regions to decrease both morphine and methamphetamine self-administration. The present study was conducted to determine if 18-MC’s effect on nicotine self-administration is mediated by acting in these same brain regions. Because moderate densities of α3β4 receptors occur in the dorsolateral tegmentum, ventral tegmental area, and basolateral amygdala, these brain areas were also examined as potential sites of action of 18-MC. Local administration of 18-MC into either the medial habenula, the basolateral amygdala or the dorsolateral tegmentum decreased nicotine self- administration. Surprisingly, local administration of 18-MC into the interpeduncular nucleus increased nicotine self-administration while local administration of 18-MC into the ventral tegmental area had no effect on nicotine self-administration.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Centipede KCNQ Inhibitor Sstx Also Targets KV1.3
    toxins Article Centipede KCNQ Inhibitor SsTx Also Targets KV1.3 Canwei Du 1, Jiameng Li 1, Zicheng Shao 1, James Mwangi 2,3, Runjia Xu 1, Huiwen Tian 1, Guoxiang Mo 1, Ren Lai 1,2,4,* and Shilong Yang 2,4,* 1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; [email protected] (C.D.); [email protected] (J.L.); [email protected] (Z.S.); [email protected] (R.X.); [email protected] (H.T.); [email protected] (G.M.) 2 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; [email protected] 3 University of Chinese Academy of Sciences, Beijing 100009, China 4 Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China * Correspondence: [email protected] (R.L.); [email protected] (S.Y.) Received: 27 December 2018; Accepted: 27 January 2019; Published: 1 February 2019 Abstract: It was recently discovered that Ssm Spooky Toxin (SsTx) with 53 residues serves as a key killer factor in red-headed centipede’s venom arsenal, due to its potent blockage of the widely expressed KCNQ channels to simultaneously and efficiently disrupt cardiovascular, respiratory, muscular, and nervous systems, suggesting that SsTx is a basic compound for centipedes’ defense and predation. Here, we show that SsTx also inhibits KV1.3 channel, which would amplify the broad-spectrum disruptive effect of blocking KV7 channels. Interestingly, residue R12 in SsTx extends into the selectivity filter to block KV7.4, however, residue K11 in SsTx replaces this ploy when toxin binds on KV1.3.
    [Show full text]
  • Characterisation of a Novel A-Superfamily Conotoxin
    biomedicines Article Characterisation of a Novel A-Superfamily Conotoxin David T. Wilson 1, Paramjit S. Bansal 1, David A. Carter 2, Irina Vetter 2,3, Annette Nicke 4, Sébastien Dutertre 5 and Norelle L. Daly 1,* 1 Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; [email protected] (D.T.W.); [email protected] (P.S.B.) 2 Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (D.A.C.); [email protected] (I.V.) 3 School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia 4 Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Nußbaumstraße 26, 80336 Munich, Germany; [email protected] 5 Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, 34095 Montpellier, France; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4232-1815 Received: 3 May 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework.
    [Show full text]