Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes Chandrani Pramanik University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Pramanik, Chandrani, "Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes" (2011). Doctoral Dissertations. 574. https://scholars.unh.edu/dissertation/574 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CHEMISTRY OF ACENES, [60]FULLERENES, CYCLACENES AND CARBON NANOTUBES BY CHANDRANI PRAMANIK B.Sc., Jadavpur University, Kolkata, India, 2002 M.Sc, Indian Institute of Technology Kanpur, India, 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science May 2011 UMI Number: 3467368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3467368 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A En P. Miller, Dissertation director Pribfessor of Chemistry and Materials science J c\ MO m • E • 'f "^ '-p~»~~ James E. Harper Professor of Physics and Materials Science ;/\ ./ Donald C. Sundberg / Emeritus Professor of Materials/ Science ^A_2^b5' Richard P. Johnson Professor of Chemistry Karsten Pohl Professor of Physics and Materials Science Date "If I find 10,000 ways something won't work, I haven't failed. I am not discouraged, because every wrong attempt discarded is another step forward". —Thomas Edison "Failure is the opportunity to begin again more intelligently." — Henry Ford in ACKNOWLEDGEMENTS My thesis would be incomplete without expressing my sincere gratitude to certain individuals. I owe my deepest gratitude to my advisor Prof. Glen Miller for his guidance, patience and endorsement, both intellectually and financially. I would never forget his consolations during one of those depressed days because of some failed reaction. But I want to thank him the most for providing me the opportunity to work in the various fields of materials science ranging from organic chemistry to nanotechnology. It was always great to learn from his amazing ability to channel his enthusiasm on a particular topic through his talks. I want to dedicate my thesis to my parents Mrs. Ashrukana Pramanik and Late Joy Narayan Pramanik whose blessings and inspiration still drag me the most. I would not have been able to walk this journey alone without the constant support and immense enthusiasm of my sister Dr. Indrani Pramanik and my brother-in-law Dr. Nilay Kundu, channeled through all those long distance telephone calls. I can never thank enough my husband Jishnu Bhattacharyya for his constant encouragement. The tiniest bit of success in my research often excited him more than me. He even gave me company sometimes when I was at work late at night. I would also like to express my sincerest thanks to my parents-in-law Dr. Saurindramohan Bhattacharyya and Mrs. Tapati Bhattacharyya and by brother-in-law Pratyush Bhattacharyya for their blessings and love. iv I feel honored to have Prof. James Harper, Prof. Richard Johnson, Prof. Karsten Pohl and Prof. Donald Sundberg in my thesis committee. Collaborating with Prof. Harper was a wonderful learning experience. Prof. Johnson's computation course has significantly contributed to my overall chemistry education. I am fortunate to have Prof. Harper, Prof. Johnson, Prof. Miller, Prof. Sundberg and Prof. Charles Zercher as my teachers for various courses. My heartiest thanks go to Dr. Ryan Kopreski for being my computation guru. Without his help, a large part of my research would have remained incomplete. Ryan has been tremendously helpful to me during the preparations of this thesis, as well as with my review paper and proposal earlier. He is always available to discuss chemistry whenever the need be. I would like to thank Jon Briggs for a very thorough review of my thesis. Thanks to Yushu Li for helping me with the last few clean-up reactions, to Yi Xu for always being so supportive and to Jeremy Kintigh, Julia Chan, Simka Ellis, Dr. Jennifer Hodgson, Shunfu Hu, Dr. Weimin Lin, James Roane and Lei Zhou for discussions on research and random stuff. The contribution of some past members of the Miller group towards my doctoral research is undeniable. It is a pleasure to acknowledge the help of Dr. Irvinder Kaur, Dr. Wenling Jia and Dr. Michael Jadzyk for training me on several critical and sensitive organic syntheses as well as various analytical tools. I also want to thank Eman Akam, Dr. Andrew Athans, Joe Dunn, Dr. Jun-fu Liu, Polina Prusevich, Dr. James Rainbolt, Elizabeth Stairs and Nathan Stein for always being helpful and cooperative. v Often when I felt deluded about chemistry, friendship kept it real. I am really thankful to my friends at UNH, Dr. Dana Filoti, Elizabeth Garcia, Srinivas Guntur, Parikshit Junnarkar, Faraz Mehdi, Manasi Patil and Dr. Aveek Sarkar for being by my side. When things did not go right, it was always refreshing to talk to my buddies Dr. Samanwita Pal, Karishma Jain, Susmita Basak, Debasmita Chaki, Manikarnika Kanjilal, Payel Samanta and Saikat Chakraborti Thakur. I am indebted to my friends Dr. Priya Iyer and Dr. Anandarup Goswami for their priceless help in fetching me some valuable literature. I am very thankful to Cindi Rower and Peg Torch for being so kind and helpful on innumerable occasions. My sincere thanks go to Bob Constantine for his willingness and eagerness to help all the time, to Cathy Gallagher, Dr. Patricia Wilkinson and John Wilderman for always finding the time to teach me various analytical techniques including NMR, and to Nancy Cherim and Mark Townley for teaching me how to handle the TEM and the SEM. Last but not the least I thank "National Science Foundation" and "Center for the High-rate Nanomanufacturing" for funding me throughout my Ph.D career. Thank you for reading my thesis! VI TABLE OF CONTENTS ACKNOWLEDGEMENTS IV TABLE OF CONTENTS VII LIST OF FIGURES XI LIST OF SCHEMES XV LIST OF TABLES XVIII LIST OF MOLECULES XX ABSTRACT XXX CHAPTER 1 1 1. SYNTHESIS AND STUDY OF ACENES, SUBSTITUTED ACENES, AND ACENE QUINONES 1 1.1 Introduction 1 1.1.1 Syntheses and State of the Art Applications of Acenes and Functionalized Acenes 2 1.1.1.1 Anthracene 3 1.1.1.2 Substituted Anthracenes and Their Applications 4 1.1.1.2.1 FETs with Functionalized Anthracenes 5 1.1.1.2.2 OLEDs with Anthracene Derivatives 7 1.1.1.2.3 Solar Cells with Functionalized Anthracenes 9 1.1.1.3 Tetracene 10 1.1.1.4 Substituted Tetracenes and Their Applications 11 1.1.1.5 Pentacene and Its Applications 15 1.1.1.5.1 FETs and Charge Carrier Mobility of Pentacene 17 1.1.1.5.2 Recent Advances with Pentacene in Other Applications 21 1.1.1.5.3 Drawbacks of Pentacene 22 1.1.1.6 Scope of Functionalized Pentacenes 23 1.1.1.6.1 FETs orTFTs of Functionalized Pentacenes 25 1.1.1.6.2 Other Applications of Functionalized Pentacenes 29 1.1.1.7 Larger Acenes 31 1.1.1.7.1 Hexacene 32 1.1.1.7.2 Functionalized Hexacenes 32 1.1.1.7.3 Heptacene 33 vii 1.1.1.7.4 Functionalized Heptacenes 35 1.1.1.7.5 Octacene, Nonacene and Functionalized Nonacenes 37 1.1.2 Theory behind Chemistry and Electronic Properties of Acenes 39 1.1.2.1 Stability and Reactivity of Acenes 39 1.1.2.2 Comparative Study of Reactivity of Acenes 40 1.1.2.3 Photodegradation of Acenes 41 1.1.2.4 HOMO-LUMO Energy and Band Gap of Acenes 43 1.2 Results and Discussion 48 1.2.1 Sulfur Stabilized Pentacene Derivatives 48 1.2.1.1 Synthesis of 3,3'-(Pentacene-6,13-diylbis(sulfanediyl))dipropanoic acid, an Intermediate for Making A Molecular Switch 48 1.2.1.1.1 Synthesis 49 1.2.1.2 Synthesis of S,S'-Pentacene-6,13-diyl diethanethioate, an Intermediate for Making Pentacene Oligomers with Disulfide Linkages 54 1.2.1.2.1 Synthesis 55 1.2.1.3 Pentacene-6,13-Disulfonium Salt 59 1.2.1.3.1 Attempts to Synthesize 6,13-Bis(n-dodecylthio)pentacene 61 1.2.1.4 Attempted Synthesis of 2,3,9,10-Tetrakis(benzylthio)-6,13- bis(phenylthio)pentacene 66 1.2.1.5 Theoretical Study of Thio-substituted Pentacenes 69 1.2.1.6 Conclusions and Future Work 71 1.2.2 Synthesis of Sulfur and Chloro Substituted Anthracene 72 1.2.2.1 Synthesis of 9,10-Bis(phenylthio)anthracene 72 1.2.2.2 Application to [60]Fullerene and Carbon Nanotubes 75 1.2.2.3 Future Direction and Conclusions 76 1.2.3 Towards the Synthesis of Larger Acenes; Sulfur-Stabilized Nonacene 76 1.2.3.1 Attempt to Synthesize 1,4,8,12,15,19-Hexa(4'-^-butylphenylthio)nonacene 78 1.2.3.2 Theoretical Studies of Arylthio Substituted Nonacenes 85 1.2.3.3 Conclusions and Future Direction 86 1.2.4 Spectroscopic Studies of Acene Quinones and Hydroxyacenes in Concentrated Sulfuric Acid 87 1.2.4.1 UV-Vis-NIR Study of Acene Derivatives in Concentrated Sulfuric Acid 88 vin 1.2.4.2 Proposed Mechanism 94 1.2.4.3 Conclusions and Future Direction 96 CHAPTER 2 97 2.
Recommended publications
  • Appendix 1 Table of Contents
    @ECHA EUROPEAN CHEMICALS AGENCY Appendix 1 Table of Contents: Supplementary Table C:Substances on Annex II of the Cosmetic Products Regulation ... 1 Supplementary Table D: Substances proposed to be restricted due their use restriction in CPR Annex IV column 9..,,.. 119 Supplementary Table E: Substances allowed in tattoo inks subject to the conditions specified in CPR Annex IV columns h and i ......r29 Annankatu 18. P.O. Box 400, FI-00121 Helsinki, Finland I Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV RESTRICTION REPORT - SUBSTANCES IN TATTOO INKS AND PERMANENT MAKE UP Su lemen Table C:Substances on Annex II of the Cosmetic Products Re ulationl Substance EC# cAs # Substance EC# cAs # R T T T A- s c R I T Name Name e b b b II s M 7 c I s I I I #4 5 6 D 9 2 1 2 3 a 3 3 3 N-(s- Chlorobenzoxa zol-2- 35783- vl)acetamide 57-4 1 (2- Acetoxyethyl)t rimethylammo (2- nium acetoxyethyl hydroxide )trimethyla 200- (Acetylcholine) 200- mmonium 124-9 5 1-84-3 and its salts t2a-9 51-84-3 2 Deanol Deanol 222- 3342- aceglumate 222- 3342- aceqlumate 085-5 61-8 (INN) 085-5 61-8 3 Spironolacto 200- Spironolactone 200- ne 133-6 52-O1-7 rINN) 133-6 52-0L-7 4 14-(4- Hydroxy-3- iodophenoxy)- 3,5- diiodophenylla cetic acid (Tiratricol 200- (INN)) and its 200- Tiratricol 086- 1 5r-24-7 salts 086- 1 5l-24-7 5 Methotrexat 200- Methotrexate 200- e 413-8 59-05-2 (INN) 413-8 59-05-2 6 Aminocaproic Aminocaproi 200- acid (INN) and 200- c acid 469-3 60-32-2 its salts 469-3 60-32-2 7 Cinchophen (rNN), its salts, derivatives and salts of 205- 132-60- these 205- 132-60- Cinchophen 067-r 5 derivatives 067-l 5 Thyropropic acid (INN) and its salts 5L-26-3 9 Trichloroacet 200- Trichloroacetic 200- ic acid 927-2 75-03-9 acid 927-2 76-03-9 l0 Aconitum napellus L.
    [Show full text]
  • Principles of Surface Chemistry Central to the Reactivity of Organic Semiconductor Materials
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2018 Principles of Surface Chemistry Central To the Reactivity of Organic Semiconductor Materials Gregory J. Deye Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Inorganic Chemistry Commons Recommended Citation Deye, Gregory J., "Principles of Surface Chemistry Central To the Reactivity of Organic Semiconductor Materials" (2018). Dissertations. 2952. https://ecommons.luc.edu/luc_diss/2952 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2018 Gregory J Deye LOYOLA UNIVERSITY CHICAGO PRINCIPLES OF SURFACE CHEMISTRY CENTRAL TO THE REACTIVITY OF ORGANIC SEMICONDUCTOR MATERIALS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CHEMISTRY BY GREGORY J. DEYE CHICAGO, IL AUGUST 2018 Copyright by Gregory J. Deye, 2018 All rights reserved. ACKNOWLEDGMENTS The scientific advances and scholarly achievements presented in this dissertation are a direct result of excellent mentorships, collaborations, and relationships for which I am very grateful. I thank my advisor, Dr. Jacob W. Ciszek, for his professionalism in mentorship and scientific discourse. He took special care in helping me give more effective presentations and seek elegant solutions to problems. It has been a privilege to work at Loyola University Chicago under his direction. I would also like to express gratitude to my committee members, Dr.
    [Show full text]
  • Refining Crude Oil
    REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA CR - 159480 EXXON/GRUS. 1KWD. 78 NIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA-CR-159''PO) HIGH PEPPOFMANCF, HIGH V79-20267 DENSTTv HYDR I-CARBON FTIELS (Exxon P.esearch and Engineering Co.) 239 rp HC A11/MF A01 CSCL 21D 'Inclas G3/28 19456 NASA Lewis Research Center Contract NAS 3-20394 Qnr{l,,Y^ ^'Pr I€ ^i NASA CR - 159480 EXXON/GRUS . 1KWD . 78 L: HIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center Contract NAS 3-20394 FOREWARD The research described in this report was performed at Exxon Research and Engineering Company, Linden, New Jersey and Contract NAS 320394 with Mr.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • On‐Surface Synthesis of Ethynylene‐Bridged Anthracene Polymers
    Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201814154 Surface Chemistry German Edition:DOI:10.1002/ange.201814154 On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers Ana Sµnchez-Grande,Bruno de la Torre,JosØ Santos,Borja Cirera, Koen Lauwaet, Taras Chutora, Shayan Edalatmanesh, Pingo Mutombo,Johanna Rosen, Radek Zborˇil, Rodolfo Miranda, Jonas Bjçrk,* Pavel Jelínek,* Nazario Martín,* and David Écija* Abstract: Engineering low-band-gap p-conjugated polymers conjugated nanomaterials to be synthesized by wet chemis- is agrowing area in basic and applied research. The main try.[2,3] synthetic challenge lies in the solubility of the starting materials, On-surface synthesis has become apowerful discipline to which precludes advancements in the field. Here,wereport an design many novel molecular compounds,polymers,and on-surface synthesis protocol to overcome such difficulties and nanomaterials with atomistic precision,[4–12] some of them not produce poly(p-anthracene ethynylene) molecular wires on accessible by standard synthetic methods.Additionally,on- Au(111). To this aim, aquinoid anthracene precursor with surface chemistry enables the structural and electronic =CBr2 moieties is deposited and annealed to 400 K, resulting in characterization of the designed products with advanced anthracene-based polymers.High-resolution nc-AFM meas- surface-science techniques.[10,13,14] Recently,and within the urements confirm the nature of the ethynylene-bridge bond scope of on-surface synthesis,particular success
    [Show full text]
  • Chem 22 Homework Set 12 1. Naphthalene Is Colorless, Tetracene
    Chem 22 Homework set 12 1. Naphthalene is colorless, tetracene is orange, and azulene is blue. naphthalene tetracene azulene (a) Based on the colors observed for tetracene and azulene, what color or light does each compound absorb? (b) About what wavelength ranges do these colors correspond to? (c) Naphthalene has a conjugated π-system, so we know it must absorb somewhere in the UV- vis region of the EM spectrum. Where does it absorb? (d) What types of transitions are responsible for the absorptions? (e) Based on the absorption wavelengths, which cmpd has the smallest HOMO-LUMO gap? (f) How do you account for the difference in absorption λs of naphthalene vs tetracene? (g) Thinking about the factors that affect the absorption wavelengths, why does azulene not seem to follow the trend seen with the first two hydrocarbons? (h) Use the Rauk Hückelator (www.chem.ucalgary.ca/SHMO/) to determine the HOMO-LUMO gaps of each compound in β units. The use of this program will be demonstrated during Monday's class. 2. (a) What are the Hückel HOMO-LUMO gaps (in units of β) for the following molecules? Remember that we need to focus just on the π-systems. Use the Rauk Hückelator. (b) Use the Rauk Hückelator to draw some conjugated polyenes — linear as well as branched. Look at the HOMO. What is the correlation between the phases (ignore the sizes) of the p- orbitals that make up the HOMO and the positions of the double- and single-bonds in the Lewis structure? What is the relationship between the phases of p-orbitals of the LUMO to those of the HOMO? (c) Use your answer from part b and the pairing theorem to sketch the HOMO and LUMO of the polyenes below (again, just the phases — don't worry about the relative sizes of the p- orbitals).
    [Show full text]
  • Synthesis and Properties of Heterocyclic Acene Diimides
    ORGANIC LETTERS XXXX Synthesis and Properties of Heterocyclic Vol. XX, No. XX Acene Diimides 000–000 Cheng Li,†,‡ Chengyi Xiao,†,‡ Yan Li,*,† and Zhaohui Wang*,† Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China [email protected]; [email protected] Received December 27, 2012 ABSTRACT A series of heterocyclic acene diimides were synthesized effectively based on the condensation of o-phenylenediamine, 1,2-benzenedithiol, and 2-aminothiophenol with 2,3,6,7-tetrabromo-1,4,5,8-naphthalene tetracarboxylic diimide. The diimides exhibit interesting optical and electrical properties with one of them showing a hole mobility up to 0.02 cm2 VÀ1 sÀ1. In recent years, naphthalene tetracarboxylic diimides has been applied as high-performance solution-deposited (NDIs, 1, Figure 1) and their core-expanded derivatives ambipolar organic transistors.2 In contrast, the expansion have attracted a great deal of attention due to their of the π-system along the lateral position of NDIs has been interesting electro-optical properties and potential appli- demonstrated only recently due to the synthetic difficulties. cations as organic semiconductors in organic electronics.1 Recently, the synthesis of tetracene tetracarboxylic The π-skeleton of NDIs could be expanded along two diimides based on two methods of direct double ring directions: the peri position (1, 4, 5, 8) and the lateral extension of electron-deficient NDIs involving metal- position (2, 3, 6, 7). The expansion of the π-system along lacyclopentadienes and bismuth-triflate-mediated double- the peri position has been studied for many decades cyclization reaction of acid chlorides and isocyanates has because it induces impressive bathochromic shifts and been reported, which displays dramatic bathochromic shifts, smaller energy band gaps, and is a promising can- 3 † Institute of Chemistry, Chinese Academy of Sciences.
    [Show full text]
  • Community Soil Study
    Tonawanda Community Fund An affiliate of “The Wellness Institute of Greater Buffalo” Community Soil Study Fact Sheet In November 2012, Tonawanda Community Fund (TCF) led a preliminary study in a Tonawanda neighborhood to find out if air toxins were contaminating surface soil; and, if pollutants were present, do levels pose a health risk. TCF tested the soil for toxic chemicals on Kaufman Ave/James Ave/Sawyers Ave. streets in the Town of Tonawanda, NY. This neighborhood is located off of River Rd in the heart of Tonawanda’s industrial corridor. The study was initiated due to recent community complaints of a black gooey substance apparently coming from a close by air source and depositing on soil, vegetation and vehicles. The study gained more significance when Jackie James Creedon, TCF member and former director of the Clean Air Coalition of WNY, learned that a similar community’s surface soil in Birmingham, AL, where two foundry coke plants reside, was contaminated with a dangerous chemical called Benzo[a]pyrene (BAP). How the Soil was Sampled and Tested Ken‐Ton residents and TCF members, Charles Matteliano from TEQ Solutions, and Andrew Baumgartner, a student at University of Buffalo mentoring under Chemistry professor Dr .Joe Gardella, collected soil samples from a playground and 5 homes in the neighborhood. They also collected a background sample at Beaver Island State Park. Each soil sample, a composite of 6 sub samples, was tested at Test America (Amherst, NY) for 16 polycyclic aromatic hydrocarbon (PAH) compounds and 8 heavy metals. What Was Found Harmful Chemicals: Many chemicals were elevated above background sample.
    [Show full text]
  • Journal of Fluorine Chemistry 221 (2019) 1–7
    Journal of Fluorine Chemistry 221 (2019) 1–7 Contents lists available at ScienceDirect Journal of Fluorine Chemistry journal homepage: www.elsevier.com/locate/fluor Steric and electronic effects of3 CF conformations in acene(CF3)n derivatives T Nicholas J. DeWeerda, Eric V. Bukovskya, Karlee P. Castroa, Igor V. Kuvychkoa, ⁎ ⁎ ⁎ Alexey A. Popovb, , Steven H. Straussa, , Olga V. Boltalinaa, a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States b Liebniz Institute for Solid State and Materials Research (IFW), Dresden 01069, Germany ARTICLE INFO ABSTRACT Keywords: The X-ray and DFT-optimized structures of the electron acceptor 2,3,6,7,9,10-anthra-cene(CF3)6 (ANTH-6-1) and Trifluoromethyl the 1/2 donor/acceptor co-crystal pyrene/(ANTH-6-1)2 are reported. These structures, along with extensive DFT PAH calculations on various conformations of ANTH-6-1 and 9,10-ANTH(CF3)2, suggest that the degree of bending of Acene the aromatic core in ANTH-6-1 and the DFT-predicted energies of ANTH-6-1 and 9,10-ANTH(CF3)2 are strongly Conformations 2 correlated with the relative eclipsed vs. staggered conformations of the CF3 groups attached to the central C(sp ) Bent pi systems carbon atoms (C9 and C10). Other literature X-ray and DFT-optimized structures of anthracene and pentacene X-ray structures 2 DFT calculations derivatives with n-C8F17 and/or CF3 substituents on the central C(sp ) atoms are analyzed and show (i) that the eclipsed vs. staggered correlation with the degree of bending of the aromatic cores may be a general phenom- enon and (ii) that molecules of this type are probably more stable when the acene core is bent than when it is planar.
    [Show full text]
  • Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory
    Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory by Samia M. Hamed A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jeffrey B. Neaton, Chair Professor Martin Head-Gordon, Co-chair Professor Naomi Ginsberg Professor Michael F. Crommie Summer 2020 Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory Copyright 2020 by Samia M. Hamed 1 Abstract Excited States of Molecules with Density Functional Theory and Many Body Perturbation Theory by Samia M. Hamed Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey B. Neaton, Chair Professor Martin Head-Gordon, Co-chair The accurate prediction of electronic excitation energies in molecules is an area of intense research of significant fundamental interest and is critical for many applications. Today, most excited state calculations use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this dissertation, I have examined and critically assessed an alternative method for predicting charged and low-lying neutral excitations with similar computational cost: the ab initio Bethe-Salpeter equation (BSE) approach. Rigorously based on many-body Green's function theory but incorporating information from density functional theory, the predictive power of the BSE approach remained at the beginning of this work unexplored for the neutral and charged electronic excitations of organic molecules. Here, the results and implications of several systematic benchmarks are laid out in detail. i Contents Contents i List of Figures iii List of Tables vii 1 Electronic excited state calculations in molecules: challenges and oppor- tunities 1 1.1 Case Study 1: Biomimetic light harvesting complexes .
    [Show full text]
  • Spectroscopic Study of Anisotropic Excitons in Single Crystal Hexacene † † ‡ ‡ ‡ † Alexey Chernikov,*, Omer Yaffe, Bharat Kumar, Yu Zhong, Colin Nuckolls, and Tony F
    Letter pubs.acs.org/JPCL Spectroscopic Study of Anisotropic Excitons in Single Crystal Hexacene † † ‡ ‡ ‡ † Alexey Chernikov,*, Omer Yaffe, Bharat Kumar, Yu Zhong, Colin Nuckolls, and Tony F. Heinz*, † Departments of Physics and Electrical Engineering, Columbia University, New York, New York 10027, United States ‡ Department of Chemistry, Columbia University, New York, New York 10027, United States *S Supporting Information ABSTRACT: The linear optical response of hexacene single crystals over a spectral range of 1.3−1.9 eV was studied using polarization-resolved reflectance spectroscopy at cryogenic temperatures. We observe strong polarization anisotropy for all optical transitions. Pronounced deviations from the single-molecule, solution-phase spectra are present, with a measured Davydov splitting of 180 meV, indicating strong intermolecular coupling. The energies and oscillator strengths of the relevant optical transitions and polarization-dependent absorption coefficients are extracted from quantitative analysis of the data. SECTION: Spectroscopy, Photochemistry, and Excited States inear acenes, that is, naphthalene, anthracene, tetracene, established between the degree of CT character and the so- L and pentacene, form a unique family of organic semi- called Davydov splitting (DS)19 of the low-lying excitons conductors. These materials readily form large (>100 μm2) observed in polarization-resolved optical absorption spectra.6 single crystals that exhibit a “herring-bone” packing motif in Thus, experimental characterization of the intrinsic optical 1 which aromatic edge-to-face interactions dominate. During the properties of organic crystals also facilitates rational design of last few decades, this family has been the subject of many advanced optoelectronic devices. Naturally, the steady increase 2 experimental and theoretical studies, especially motivated by of the intermolecular coupling from naphthalene to pentacene fl potential applications in exible, low-cost optoelectronic crystals provides a strong impetus for a systematic study of even 3−5 devices.
    [Show full text]