Barriers to Adoption of GM Crops

Total Page:16

File Type:pdf, Size:1020Kb

Barriers to Adoption of GM Crops Iowa State University Capstones, Theses and Creative Components Dissertations Fall 2021 Barriers to Adoption of GM Crops Madeline Esquivel Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Agricultural Education Commons Recommended Citation Esquivel, Madeline, "Barriers to Adoption of GM Crops" (2021). Creative Components. 731. https://lib.dr.iastate.edu/creativecomponents/731 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Barriers to Adoption of GM Crops By Madeline M. Esquivel A Creative Component submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Plant Breeding Program of Study Committee: Walter Suza, Major Professor Thomas Lübberstedt Iowa State University Ames, Iowa 2021 1 Contents 1. Introduction ................................................................................................................................. 3 2. What is a Genetically Modified Organism?................................................................................ 9 2.1 The Development of Modern Varieties and Genetically Modified Crops .......................... 10 2.2 GM vs Traditional Breeding: How Are GM Crops Produced? ........................................... 12 2.3 Worldwide Perceptions and Acceptance of GM Crops ...................................................... 13 3. Public Perception and Misinformation ..................................................................................... 14 3.1 Framing ............................................................................................................................... 15 3.2 Misinformation .................................................................................................................... 18 4.0 Potential Advantages of GM Crops ........................................................................................ 21 4.1 Population Growth .............................................................................................................. 22 4.2 Decrease in Arable Land ..................................................................................................... 25 4.3 Climate Change ................................................................................................................... 27 5.0 Concerns around GM Crops ................................................................................................... 29 5.1 Health Concerns .................................................................................................................. 30 5.2 Social and Economic Concerns ........................................................................................... 35 5.3 Environmental Concerns ..................................................................................................... 38 6. Case Studies for GM Implementation, Regulation, and Perception ......................................... 40 6.1 Argentina ............................................................................................................................. 40 6.2 India ..................................................................................................................................... 45 7.0 Potential Routes towards Greater Acceptance ........................................................................ 50 7.1 Regulation and Political Support......................................................................................... 51 7.2 Integrated Management Solutions ....................................................................................... 53 7.3 Education ............................................................................................................................. 54 References ..................................................................................................................................... 57 2 1. Introduction Plant breeding is a multifaceted discipline; however, its definition varies in specificity based on educational and research needs. According to Walter Fehr (1987), plant breeding is defined as “the art and science of the genetic improvement of plants”. Rex Bernardo (2010) builds on this by defining plant breeding as, “the genetic improvement of plants for human benefit”. More specifically, plant breeding, as a field, is a combination of both Fehr’s and Bernardo’s definitions and is the collaborative, scientific, and strategic creation of genetically desirable plants for human benefit. Advancements in plant breeding and agriculture have been major catalysts for the rise and fall of civilizations, the development of culture, and the continual survival of the human population (Fuller and Stevens, 2019). For example, hunter gatherers’ effort to select edible kernels and larger ears made teosinte, a Mexican grass and wild relative of maize, into the modern corn we grow today (Benz, 2001). One of the largest, most well-known, and most controversial byproducts of these advancements are genetically modified organisms (GMO). GMO is a common term and acronym that most people have heard of, but not many people understand what a GMO is or how to define it. Ironically, some associate ‘GMO’ with human interference in the modification of organisms, yet humans have been genetically modifying organisms for thousands of years using selection breeding and crossbreeding to isolate and create plants with desirable traits (FDA, 2020a). This negative association is due to the term GMO not being clearly defined, and freely used among consumers, the media, regulatory bodies, and even researchers. This is problematic because the term ‘GMO’ can encompass varying definitions, which may result in both negative and positive perception (Hallman et al., 2013). Crops that have been modified using microorganisms, like Agrobacterium, are often referred to 3 as ‘GMOs’, even though Agrobacterium mediated transformation is a much more complex and distinct process compared to a backcross scheme used in traditional breeding, or selection strategies used for domestication. In addition to ‘GMO’, crops that have been genetically engineered are commonly referred to as genetically modified (GM), genetically engineered (GE), or biotech crops (FDA, 2020a; ISAAA, 2020; USDA Economic Research Service, 2020a). For the purposes of this paper, genetically engineered crops will be referred to as GM crops. GM crops are the product of genetic engineering, a process defined as the “manipulation of an organism’s genes by introducing, eliminating, or rearranging specific genes using the methods of modern biology” (USDA, 2020). Genes are regions of DNA that encode proteins, which in turn dictate cell functions, or characteristics of the organism (Nature Education, 2010a). Traits are determined by one or more genes and genes are made of DNA (Nature Education, 2010a). Genetic engineering enables scientists to identify genes associated with desired traits, copy the DNA, transform it into another organism, and then grow that transformed organism (FDA, 2020a). The primary advantage of genetic engineering is its ability to broaden genetic variation and diversity that may not have been possible with conventional breeding methods (Acquaah, 2016). This is the case with the Golden Rice Project: rice does not contain β-carotene, the provitamin necessary for vitamin A conversion in the body and as a result, countries with high rice consumption suffer from varying levels of Vitamin A deficiency (Ye and Beyer, 2000). This deficiency affects millions of children worldwide and causes blindness and exacerbates common afflictions (Ye and Beyer, 2000; Rice et al., 2004; Golden Rice Project, 2020a). However, researchers were able to develop a genetically engineered rice to contain β-carotene, or “Golden Rice” and engineer beneficial genetic variation that a traditional rice breeding program 4 would not have been able to create (Ye and Beyer, 2000). Figure 1 is a comparison between transgenically developed Golden Rice grains and white rice grains. The way that GM crops are framed in the general public and represented by in the media can be problematic for researchers and confusing for consumers and regulators when assessing the safety and potential impacts of their use. Since their introduction, GM crops have generated health, environmental, social and economic concerns around safety and long-term effects. Although some critiques raised against GM might be valid, many are based in inaccurate rhetoric and misinformation disseminated by the general public and the media. There are numerous articles claiming detrimental effects of GM crops, that have been later retracted or disproven (McInerney, C. Bird and Nucci, 2004; Raman, 2018). For example, the Séralini experiment concluded that rats fed GM corn had an increased rate of tumor formation and was circulated Figure 1. Golden Rice grain compared to white rice grain in screenhouse of Golden Rice plants. By International Rice Research Institute (IRRI) - https://www.flickr.com/photos/ricephotos/5516789000/in/set-72157626241604366, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=14908001 5 widely prior to being retracted by scientific
Recommended publications
  • Genetically Modified Cotton
    BACKGROUND 2013 GENETICALLY MODIFIED COTTON Genetically engineered (also called genetically modified or GM) cotton is currently grown on 25 million hectares around the world, mostly in India, China, Pakistan and the US.1 Other countries growing much smaller amounts of GM cotton are South Africa, Burkina Faso, Sudan, Brazil, Argentina, Paraguay, Columbia, Mexico, Costa Rica, Burma, Australia, and Egypt. GM cotton is engineered with one of two traits. One makes it resistant to glyphosate-based herbicides such as Monsanto’s Roundup, SUMMARY while the other stimulates the plant to produce a toxin that kills the bollworm, one of the crop’s primary pests. This pest-resistant cotton GM COTTON FAILED is engineered with a gene from the bacteria Bacillus thurengiensis FARMERS IN INDIA or “Bt”, and is the more commonly grown of the two types. » Yields declined. BT COTTON IN INDIA » Secondary pests emerged, Cotton is an important cash crop in India. It is grown on 12 million forcing increased pesticide use. hectares, making India the second largest producer of cotton in the » The price of cotton seed rose. world, behind China. Insect-resistant Bt cotton is the only GM crop currently grown in India.2 It was introduced in India by Monsanto in » Farmers lost the option to buy 2002, under the trade name Bollgard, in a joint venture with the non-GM cotton seeds. Indian seed company Mahyco. Monsanto promised Indian farmers that Bt cotton would: 1. Reduce the amount of pesticides farmers need to buy to control pests, 2. Increase harvests and farm income by reducing crop losses due to pest attacks.3 In the first few years after Bt cotton was commercialized in India, some farmers saw reductions in pesticide use and crop losses, but this pattern quickly and dramatically changed.
    [Show full text]
  • Recombinant DNA and Elements Utilizing Recombinant DNA Such As Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology
    Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written by Amy B. Vento and David R. Gillum Office of Environmental Health and Safety University of New Hampshire June 3, 2002 Introduction Recombinant DNA (rDNA) has various definitions, ranging from very simple to strangely complex. The following are three examples of how recombinant DNA is defined: 1. A DNA molecule containing DNA originating from two or more sources. 2. DNA that has been artificially created. It is DNA from two or more sources that is incorporated into a single recombinant molecule. 3. According to the NIH guidelines, recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. Description of rDNA Recombinant DNA, also known as in vitro recombination, is a technique involved in creating and purifying desired genes. Molecular cloning (i.e. gene cloning) involves creating recombinant DNA and introducing it into a host cell to be replicated. One of the basic strategies of molecular cloning is to move desired genes from a large, complex genome to a small, simple one. The process of in vitro recombination makes it possible to cut different strands of DNA, in vitro (outside the cell), with a restriction enzyme and join the DNA molecules together via complementary base pairing. Techniques Some of the molecular biology techniques utilized during recombinant DNA include: 1.
    [Show full text]
  • Bt Cotton in Texas
    B-6107 02-01 Bt Cotton Technology in Texas: A Practical View Glen C. Moore, Thomas W. Fuchs, Mark A. Muegge, Allen E. Knutson* Since their introduction in 1996, transgenic cot- tons expressing the Bollgard® gene technology have been evaluated by producers in large scale commer- cial plantings across the U.S. Cotton Belt. Transgenic cottons are designed to be resistant to the target pests of bollworm Helicoverpa zea (Boddie), pink bollworm Pectinophora gossypiella (Sanders), and tobacco budworm Heliothis virescens (F.). These cottons contain Bacillus thuringiensis (Bt), a gene toxic to the target pests. The perfor- mance of these cottons has been highly efficacious against the tobacco budworm and the pink bollworm. They also preform well against bollworm; however, in certain situations producers may need to make supplemental insecticide treatments for this insect. Conditions that have contributed to the need for sup- plemental control are heavy bollworm egg laying during peak bloom, boll injury and the presence of larvae larger than 1/4 inch, high production inputs that favor rapid or rank plant growth, and fields pre- viously treated with insecticides. Earliest reports of bollworm damage on transgenic cotton varieties NuCOTN 33B and NuCOTN 35B surfaced in the Brazos Bottomlands and parts of the upper Coastal Bend areas of Texas in 1996. NuCOTN 33B and NuCOTN 35B have, however, provided effective bollworm control throughout much of Texas and reduced insecticide treatments for bollworm, tobacco budworm and pink bollworm compared to non-Bollgard® cotton. Yields from Bollgard® cotton are generally equal to or slightly higher than those for standard non- Bollgard® cultivars grown under the same production scheme.
    [Show full text]
  • Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
    sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management.
    [Show full text]
  • A Short History of DNA Technology 1865 - Gregor Mendel the Father of Genetics
    A Short History of DNA Technology 1865 - Gregor Mendel The Father of Genetics The Augustinian monastery in old Brno, Moravia 1865 - Gregor Mendel • Law of Segregation • Law of Independent Assortment • Law of Dominance 1865 1915 - T.H. Morgan Genetics of Drosophila • Short generation time • Easy to maintain • Only 4 pairs of chromosomes 1865 1915 - T.H. Morgan •Genes located on chromosomes •Sex-linked inheritance wild type mutant •Gene linkage 0 •Recombination long aristae short aristae •Genetic mapping gray black body 48.5 body (cross-over maps) 57.5 red eyes cinnabar eyes 67.0 normal wings vestigial wings 104.5 red eyes brown eyes 1865 1928 - Frederick Griffith “Rough” colonies “Smooth” colonies Transformation of Streptococcus pneumoniae Living Living Heat killed Heat killed S cells mixed S cells R cells S cells with living R cells capsule Living S cells in blood Bacterial sample from dead mouse Strain Injection Results 1865 Beadle & Tatum - 1941 One Gene - One Enzyme Hypothesis Neurospora crassa Ascus Ascospores placed X-rays Fruiting on complete body medium All grow Minimal + amino acids No growth Minimal Minimal + vitamins in mutants Fragments placed on minimal medium Minimal plus: Mutant deficient in enzyme that synthesizes arginine Cys Glu Arg Lys His 1865 Beadle & Tatum - 1941 Gene A Gene B Gene C Minimal Medium + Citruline + Arginine + Ornithine Wild type PrecursorEnz A OrnithineEnz B CitrulineEnz C Arginine Metabolic block Class I Precursor OrnithineEnz B CitrulineEnz C Arginine Mutants Class II Mutants PrecursorEnz A Ornithine
    [Show full text]
  • Rheumatoid Arthritis a Virus Disease?
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.132 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 132-143 Inflammation and fibrosis Rheumatoid arthritis a virus disease? A. M. DENMAN From the Division ofImmunological Medicine, Clinical Research Centre, Harrow, Middlesex We now understand many of the immunopatho- arteritis with perivascular infiltrates of chronic logical processes that damage joints and other inflammatory cells, and aberrant immune responses. structures in rheumatoid arthritis and diffuse con- Secondly, virus-infected cells initiate the whole nective tissue diseases. Unfortunately, our progress spectrum of inflammatory and immune reactions in this direction is matched by an equal failure to which characterise the human disorders. These identify the causes of all but a few of these disorders. include complement activation by the classical and Nevertheless, the stimuli which initiate these diseases alternative pathways, which in turn initiate such are probably commonly encountered and tissue processes as the immediate hypersensitivity reaction, damage results when these immunopathological platelet aggregation, and the chemotaxis of granulo- processes are abnormal in intensity and duration- cytes and mononuclear phagocytes. Furthermore, in other words, disease follows an unusual host virus-infected cells attract antibody either through reaction to a variety of environmental factors. This virus-coded antigens on the cell membrane or principle is well illustrated by the degenerative because infected cells commonly carry receptors for copyright. disease of the central nervous system, subacute the Fc portion of the immunoglobulin molecule. sclerosing panencephalitis, which ensues in in- These cells also attract a cellular response in the dividuals who are unable to control the growth form of both specifically sensitised T lymphocytes and dissemination of measles virus.
    [Show full text]
  • World Resources Institute the Monsanto Company
    World Resources Institute Sustainable Enterprise Program A program of the World Resources Institute The Monsanto Company: Quest for Sustainability (A) “Biotechnology represents a potentially sustainable For more than a decade, WRI's solution to the issue, not only of feeding people, but of providing Sustainable Enterprise Program (SEP) the economic growth that people are going to need to escape has harnessed the power of business to poverty…… [Biotechnology] poses the possibility of create profitable solutions to leapfrogging the industrial revolution and moving to a post- environment and development industrial society that is not only economically attractive, but challenges. BELL, a project of SEP, is also environmentally sustainable.i ” focused on working with managers and academics to make companies --Robert Shapiro, CEO, Monsanto Company more competitive by approaching social and environmental challenges as unmet market needs that provide Upon his promotion to CEO of chemical giant The business growth opportunities through Monsanto Company in 1995, Robert Shapiro became a vocal entrepreneurship, innovation, and champion of sustainable development and sought to redefine the organizational change. firm’s business strategy along principles of sustainability. Shapiro’s rhetoric was compelling. He captured analysts’ Permission to reprint this case is attention with the specter of mass hunger and environmental available at the BELL case store. degradation precipitated by rapid population growth and the Additional information on the Case
    [Show full text]
  • Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm
    Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm Haonan Zhang1, Shuwen Wu1, Yihua Yang1, Bruce E. Tabashnik2, Yidong Wu1* 1 Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China, 2 Department of Entomology, University of Arizona, Tucson, Arizona, United States of America Abstract Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin- binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non- recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac.
    [Show full text]
  • 1 Corporation Obtaining Approval, the Name of Its Representative, and the Address of Its Main Office Name: Bayer Crop Science K
    Corporation obtaining approval, the name of its representative, and the address of its main office Name: Bayer Crop Science K.K. John Gray, President Address: Marunouchi Kitaguchi Building, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo Approved Type 1 Use Regulation Name of the Type of Glufosinate herbicide tolerant, male sterile and fertility restored Living Modified oilseed rape (Modified bar, barnase, barstar, Brassica napus L.) Organism (MS1RF1, OECD UI :ACS-BNØØ4-7×ACS-BNØØ1-4) Content of the Type 1 Provision as food, provision as feed, processing, storage, Use of Living Modified transportation, disposal and acts incidental to them Organism Method of the Type 1 Use of Living Modified ― Organism 1 Outline of the Biological Diversity Risk Assessment Report I. Information collected prior to assessing Adverse Effect on Biological Diversity 1. Information concerning preparation of living modified organisms (1) Information concerning donor nucleic acid 1) Composition and origins of component elements Glufosinate herbicide tolerant and male sterile and fertility restored oilseed rape (modified bar, barnase, barstar, Brassica napus L., MS1RF1, OECD UI: ACS-BNØØ4-7 x ACS-BNØØ 1-4) (hereinafter referred to as “MS1RF1”) is a hybrid obtained by a cross between glufosinate herbicide tolerant and male sterile oilseed rape (modified bar, barnase, Brassica napus L., MS1, OECD UI: ACS-BNØØ4-7) (hereinafter referred to as “MS1”) and glufosinate herbicide tolerant and fertility restored oilseed rape (modified bar, barstar, Brassica napus L., RF1, OECD UI: ACS-BNØØ1-4) (hereinafter referred to as “RF1”). Composition of the donor nucleic acid that was used for the production of MS1 and RF1, the parent plants of MS1RF1, and the origins of component elements are shown in Table 1-1 and Table 1-2 respectively.
    [Show full text]
  • Monsanto's BT Cotton Patent, Indian Courts and Public Policy
    6. MONSANTO’S BT COTTON PATENT, INDIAN COURTS AND eligible subject matter promotes public policy and farmers’ PUBLIC POLICY interests. Keywords: Bt. cotton, patent eligible subject matter, nucleic Ghayur Alam∗ acid sequence, plant, public policy, revocation of patent, seed, ABSTRACT TRIPS. This Paper primarily deals with an unanswered substantial 1. INTRODUCTION question of patent law that has arisen in India. The question is whether an invented Nucleic Acid Sequence after being A substantial question of patent law (hereinafter, ‘question’) inserted into a seed or plant becomes part of the seed or the of great significance has arisen in India and is awaiting an plant. If answer is in the affirmative, said invention is not answer from Indian courts. The question is whether an patentable under Section 3(j) of the (Indian) Patents Act 1970, invented Nucleic Acid Sequence (NAS) after being inserted which excludes from patentability, inter alia, plants, seeds, or into a seed or plant becomes part of the seed or the plant? any part thereof. If answer is in the negative, said invention is Specifically, the question is whether the patent granted1 by patentable. Answer will determine the fate of patenting of the Indian Patent Office to Monsanto Technology LLC such inventions in the field of agro-biotechnology. Problem is (Monsanto) on transgenic variety of cottonseeds, containing that the question has moved forth and back like pendulum invented Bt. trait is valid or not? If the answer is in affirmative, from one court to another but in vain. This paper seeks to claimed invention is not patentable under the (Indian) address this question in light of the decisions of Indian courts.
    [Show full text]
  • Non-Viral Transfection of Human T Lymphocytes
    processes Article Non-Viral Transfection of Human T Lymphocytes Simon A. B. Riedl 1, Patrick Kaiser 1 , Alexander Raup 1,2, Christopher V. Synatschke 3, Valérie Jérôme 1 and Ruth Freitag 1,* 1 Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany; [email protected] (S.A.B.R.); [email protected] (P.K.); [email protected] (A.R.); [email protected] (V.J.) 2 Agap2—HIQ Consulting GmbH, 60323 Frankfurt am Main, Germany 3 Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-921-55-7371 Received: 10 September 2018; Accepted: 9 October 2018; Published: 11 October 2018 Abstract: The genetic modification of human T lymphocytes with established non-viral methods is inefficient. Linear polyethylenimine (l-PEI), one of the most popular non-viral transfection agents for mammalian cells in general, only achieves transfection rates in the single digit percentage range for these cells. Here, a well-defined 24-armed poly(2-dimethylamino) ethyl methacrylate (PDMAEMA) nanostar (number average of the molecular weight: 755 kDa, polydispersity: <1.21) synthesized via atom transfer radical polymerization (ATRP) from a silsesquioxane initiator core is proposed as alternative. The agent is used to prepare polyplexes with plasmid DNA (pDNA). Under optimal conditions these polyplexes reproducibly transfect >80% of the cells from a human T-cell leukemia cell line (Jurkat cells) at viabilities close to 90%. The agent also promotes pDNA uptake when simply added to a mixture of cells and pDNA.
    [Show full text]
  • Resistance Management Plan (Rmp) Resistance Management 1
    BOLLGARD® 3 RESISTANCE MANAGEMENT PLAN (RMP) RESISTANCE MANAGEMENT 1. PLANTING RESTRICTIONS Victoria, New South Wales and Southern PLAN Queensland Developed by Monsanto Australia Pty Ltd. All Bollgard 3 crops and refuges must be planted into moisture or watered-up between August 1 and before December 31 each year, The Resistance Management Plan is unless otherwise specified in this Resistance Management Plan. based on three basic principles: (1) Central Queensland minimising the exposure of Helicoverpa All Bollgard 3 crops and refuges must be planted into moisture or watered-up between August 1 and before October 31 each spp. to the Bacillus thuringiensis year, unless otherwise specified in this Resistance Management (Bt) proteins Cry1Ac, Cry2Ab and Plan. Bollgard 3 can only be planted from August 1 to October 31 each year. Seed cannot be planted wet or dry prior to August 1. Vip3A, (2) providing a population of Any Bollgard 3 crops planted into moisture or watered-up after susceptible individuals that can mate October 31 and up to December 31 must plant additional refuge as specified in Table 3 and 4. Bollgard 3 cannot be planted dry with any resistant individuals, hence prior to December 31 if not watered up. diluting any potential resistance, and 2. REFUGES (3) removing resistant individuals at the end of the cotton season. These principles are Growers planting Bollgard 3 cotton will be required to grow a refuge crop that is capable of producing large numbers of Helicoverpa supported through the implementation of spp. moths which have not been exposed to selection with the five elements that are the key components Bt proteins Cry1Ac, Cry2Ab and Vip3A.
    [Show full text]