SOURCES, FATE and EFFECTS of MICROPLASTICS in the MARINE ENVIRONMENT: a GLOBAL ASSESSMENT Science for Sustainable Oceans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(WHO) Report on Microplastics in Drinking Water
Microplastics in drinking-water Microplastics in drinking-water ISBN 978-92-4-151619-8 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
In the Hindu Temples of Kerala Gilles Tarabout
Spots of Wilderness. ’Nature’ in the Hindu Temples of Kerala Gilles Tarabout To cite this version: Gilles Tarabout. Spots of Wilderness. ’Nature’ in the Hindu Temples of Kerala. Rivista degli Studi Orientali, Fabrizio Serra editore, 2015, The Human Person and Nature in Classical and Modern India, eds. R. Torella & G. Milanetti, Supplemento n°2 alla Rivista Degli Studi Orientali, n.s., vol. LXXXVIII, pp.23-43. hal-01306640 HAL Id: hal-01306640 https://hal.archives-ouvertes.fr/hal-01306640 Submitted on 25 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in Supplemento n°2 alla Rivista Degli Studi Orientali, n.s., vol. LXXXVIII, 2015 (‘The Human Person and Nature in Classical and Modern India’, R. Torella & G. Milanetti, eds.), pp.23-43; in the publication the photos are in B & W. /p. 23/ Spots of Wilderness. ‘Nature’ in the Hindu Temples of Kerala Gilles Tarabout CNRS, Laboratoire d’Ethnologie et de Sociologie Comparative Many Hindu temples in Kerala are called ‘groves’ (kāvu), and encapsulate an effective grove – a small spot where shrubs and trees are said to grow ‘wildly’. There live numerous divine entities, serpent gods and other ambivalent deities or ghosts, subordinated to the presiding god/goddess of the temple installed in the main shrine. -
Bright Peaks, Dark Shadows 20 February 2012, by Jason Major
Bright peaks, dark shadows 20 February 2012, by Jason Major Amaral's "blue" peaks seen in a color-enhanced global image acquired Jan. 14, 2008. Its central peaks also attracted astronomers' MESSENGER image of Mercury's Amaral crater interest, as they were seen to possess a striking blue hue in color-enhanced images that likely indicates rocks with different composition from the surrounding surface. The 68-mile (109-km) -wide Amaral crater on Mercury reveals its brightly-tipped central peaks in Amaral's peaks resemble those of the slightly larger this image, acquired by NASA's MESSENGER crater Eminescu, which is now known to contain spacecraft on Feb. 4, 2012. Long shadows are recently-discovered features called hollows. It's not cast by the crater's peaks and rugged rim (north is yet known if Amaral also contains hollows, but it's to the left.) suspected that they may be present on the tips of the peaks. The image was acquired as a high-resolution targeted observation with MESSENGER's Narrow- The crater is named after Brazilian artist Tarsila do Angle Camera (NAC) on its Mercury Dual Imaging Amaral. She lived from 1886 to 1973 and is System (MDIS). considered to be one of the leading Latin American modernist painters. Amaral's bright peaks were first spotted during MESSENGER's first flyby of Mercury in Jan. 2008. With a smooth floor, visible ejecta and small Source: Universe Today secondary craters, Amaral appeared noticeably younger than the heavily cratered surface around it. 1 / 2 APA citation: Bright peaks, dark shadows (2012, February 20) retrieved 26 September 2021 from https://phys.org/news/2012-02-bright-peaks-dark-shadows.html This document is subject to copyright. -
Guide to the Betty J. Meggers and Clifford Evans Papers
Guide to the Betty J. Meggers and Clifford Evans papers Tyler Stump and Adam Fielding Funding for the processing of this collection was provided by the Smithsonian Institution's Collections Care and Preservation Fund. December 2015 National Anthropological Archives Museum Support Center 4210 Silver Hill Road Suitland, Maryland 20746 [email protected] http://www.anthropology.si.edu/naa/ Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 2 Scope and Contents........................................................................................................ 5 Arrangement..................................................................................................................... 5 Bibliography...................................................................................................................... 6 Names and Subjects ...................................................................................................... 6 Container Listing ............................................................................................................. 8 Series 1: Personal, 1893-2012................................................................................. 8 Series 2: Writings, 1944-2011............................................................................... -
Evidence for Thermal-Stress-Induced Rockfalls on Mars Impact Crater Slopes
Icarus 342 (2020) 113503 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes P.-A. Tesson a,b,*, S.J. Conway b, N. Mangold b, J. Ciazela a, S.R. Lewis c, D. M�ege a a Space Research Centre, Polish Academy of Science, Wrocław, Poland b Laboratoire de Plan�etologie et G�eodynamique UMR 6112, CNRS, Nantes, France c School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK ARTICLE INFO ABSTRACT Keywords: Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which Mars, surface they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these Thermal stress tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill Ices topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in Solar radiation � � turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15 N and 15 S) Weathering exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. � Craters >15 N/S have notably higher frequencies on their equator-facing slopes as opposed to the other ori entations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal inso lation and rockfall frequency. -
Diesel Exhaust
DIESEL EXHAUST What is DIESEL EXHAUST? Vehicles that use diesel fuel release exhaust that is composed of a variety of compounds harmful to human health and the environment. Vehicles that use diesel fuel include trucks, commercial buses, school buses and construction equipment. Gases released in diesel exhaust can include benzene, formaldehyde and other compounds that can contribute to cancer and other health problems. In addition to the gases, diesel particulate matter (DPM) is released as solid particles of many sizes and compositions. How can people be exposed to diesel exhaust? Diesel engines are everywhere in the world, so most people are exposed to diesel exhaust on a nearly daily basis. The most common exposure is by breathing air that contains its gases or its particulates. Exposure to diesel exhaust is not likely to occur through eating, drinking or skin contact. Diesel exhaust travels through the atmosphere and affect areas without obvious exhaust sources. How can diesel exhaust affect my health? Diesel exhaust is considered likely to cause cancer in humans. While the gaseous chemicals in diesel exhaust are a health concern and may cause cancer, there is significant concern about exposure to diesel particulate matter, especially the fine and ultra-fine particles. Exposure to diesel exhaust may irritate the eyes, nose, throat and lungs, and cause lightheadedness. Exposure to high concentrations can also cause problems for people with respiratory conditions, such as asthma. Chronic exposure can damage the lungs and affect immune system functions. What should I do if exposed to diesel exhaust? Breathing - Exposure to diesel exhaust becomes a concern only under certain conditions. -
Kerala KMBR-2019
© Regn.No. KERBIL/2012/45073 േകരള സർകാർ dated 05-09-2012 with RNI Government of Kerala 2019 Reg No.Kl/TV(N)/634/2018-20 േകരള ഗസറ് KERALA GAZETTE അസാധാരണം EXTRAORDINARY ആധികാരികമായി ്പസിദെപടുതുനത PUBLISHED BY AUTHORITY തിരുവനനപുരം, 2019 നവംബർ 08 08th November 2019 െവളി വാല്ം 8 നമർ 1195 തുലാം 22 No. 2691 Vol. VIII 22nd Thulam 1195 Thiruvananthapuram, Friday 1941 കാർതികം 17 17th Karthika 1941 GOVERNMENT OF KERALA Local Self Government (RD) Department NOTIFICATION G.O.(P)No. 77/2019/LSGD. Dated, Thiruvananthapuram 2nd November, 2019 16th Thulam, 1195. S. R. O. No. 828/2019 In exercise of the powers conferred by sections 381, 382, 387, 398, and 406 read with section 565 of the Kerala Municipality Act, 1994 (20 of 1994) and in super session of the Kerala Municipality Building Rules, 1999 issued under G.O. (Ms.) No188/99/LSG Dated 1st October, 1999 and published as S.R.O. No. 777/99 in Kerala Gazette Extraordinary No. 1786 dated 1st October, 1999 the Government of Kerala hereby make the following rules, namely:— This is a digitally signed Gazette. Authenticity may be verified through https://compose.kerala.gov.in/ 2 CHAPTER I DEFINITIONS 1. Short title, applicability and commencement.—(1) These rules may be called the Kerala Municipality Building Rules, 2019. (2) They shall apply to area under all Municipalities in the State. (3) They shall come into force at once. 2. Definitions. — (1) In these rules, unless the context otherwise requires,— (a) ‘access’ means a clear approach to a plot or a building; (b) ‘accessory building’ means a building -
Effects of Fungicides on Australian Amphipods and Organic Matter Breakdown in Aquatic Environments
EFFECTS OF FUNGICIDES ON AUSTRALIAN AMPHIPODS AND ORGANIC MATTER BREAKDOWN IN AQUATIC ENVIRONMENTS Submitted by Hung Thi Hong Vu Submitted in fulfillment of the degree of Doctor of Philosophy February 2017 School of BioSciences Faculty of Science The University of Melbourne ABSTRACT Fungicides are used widely in agriculture to control fungal diseases and increase crop yield. After application, fungicides may be transported off site via air, soil and water to ground and surface waters therefore have the potential to contaminate freshwater and marine/estuarine environments. However, relatively little is known about their potential effects on aquatic ecosystems. Amphipods are important in ecosystem service as they help with nutrient recycling through the decomposition of organic matter. The aim of this thesis is to investigate the effects of common fungicides on biological responses in two Australian amphipod species, Allorchestes compressa and Austrochiltonia subtenuis, through a combination of single and mixture laboratory experiments. In addition a field experiment investigated the effects of fungicides on organic matter breakdown. In laboratory studies, juveniles of the marine amphipod A. compressa and the freshwater amphipod A.subtenuis were chronically exposed to two commonly used fungicides, Filan® (active ingredient boscalid) and Systhane™ (active ingredient myclobutanil) at environmentally relevant concentrations. A wide range of endpoints that encompass different levels of biological organization were measured including survival, growth, reproduction, and energy reserves (lipid, glycogen, and protein content). Long term interaction effects of fungicides Filan® and Systhane™ on mature amphipod A. subtenuis was also investigated to evaluate how the results of mixture studies vary between endpoints and to determine suitable endpoints for mixture toxicity studies. -
Avio Et Al., 2016.Pdf
Marine Environmental Research xxx (2016) 1e10 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Plastics and microplastics in the oceans: From emerging pollutants to emerged threat * Carlo Giacomo Avio, Stefania Gorbi, Francesco Regoli Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA), Universita Politecnica delle Marche, Ancona, Italy article info abstract Article history: Plastic production has increased dramatically worldwide over the last 60 years and it is nowadays Received 28 January 2016 recognized as a serious threat to the marine environment. Plastic pollution is ubiquitous, but quantitative Received in revised form estimates on the global abundance and weight of floating plastics are still limited, particularly for the 11 May 2016 Southern Hemisphere and the more remote regions. Some large-scale convergence zones of plastic Accepted 15 May 2016 debris have been identified, but there is the urgency to standardize common methodologies to measure Available online xxx and quantify plastics in seawater and sediments. Investigations on temporal trends, geographical dis- tribution and global cycle of plastics have management implications when defining the origin, possible Keywords: Plastic drifting tracks and ecological consequences of such pollution. An elevated number of marine species is Microplastics known to be affected by plastic contamination, and a more integrated ecological risk assessment of these Distribution materials has become a research priority. Beside entanglement and ingestion of macro debris by large Accumulation vertebrates, microplastics are accumulated by planktonic and invertebrate organisms, being transferred Marine organisms along food chains. Negative consequences include loss of nutritional value of diet, physical damages, Ecotoxicological effects exposure to pathogens and transport of alien species. -
A Pilot Study to Determine the Potential Impacts of Plastics on Aotearoa-New Zealand's Marine Environment
A pilot study to determine the potential impacts of plastics on Aotearoa-New Zealand's marine environment Olga Pantos∗1, Francois Audrezet2, Fraser Doake1, Lloyd Donaldson3, Pierre Dupont1, Sally Gaw4, Joanne Kingsbury1, Louise Weaver1, Gavin Lear5, Grant Northcott6, Xavier Pochon2,5, Dawn Smith3, Beatrix Theobald3, Jessica Wallbank5, Anastasija Zaiko2,5, and Stefan Maday5 1The Institute of Environmental Science and Research { Christchurch, New Zealand 2Cawthron Institute { Nelson, New Zealand 3Scion { Rotorua, New Zealand 4The University of Canterbury { Christchurch, New Zealand 5University of Auckland [Auckland] { New Zealand 6Northcott Research Consultants Ltd { Hamilton, New Zealand Abstract Once in the ocean, plastics are rapidly colonised by complex communities. Due to the buoyant and resilient nature, ocean plastics pose a significant risk to ecosystems and fishery- based economies through their role in the translocation of invasive species and pathogens or changes in ecosystem function. Factors affecting the development and composition of these communities are still poorly understood, and there is currently no information on the biofilms that form on marine plastics in the southern hemisphere or their potential risks to the environment. This study aims to address this knowledge gap. To do this, two chemically and structurally distinct polymers, which are also common in marine plastic litter, nylon 6 and polyethylene, were deployed for 3-months in the Port of Lyttelton, Christchurch, New Zealand. Biofilm present after 2 weeks was dominated by diatoms and cyanobacteria. Metagenomic analysis showed that the plastisphere was distinct from the communities associated with glass control surfaces and the surrounding water. Polymer-specificity of the bacterial com- munities seen at 2-weeks was absent in subsequent time points, whereas fungal communities did not change over time. -
Bilag 6 UNESCO Verdensarv Vadehavets Design Værktøjskasse
Verdensarv Vadehavet Værktøjskasse til interessenter om formidling og markedsføring Start Om værktøjskassen .................................... 3 Brandingbeskeder ....................................................... 18 Brandingstatement ................................... 20 Hvem er værkstøjskassen 4 Hovedpunkter................................................... 21 henvendt til? ....................................................... Fakta-ark .............................................................. 22 Information om brandet Fotobibliotek ..................................................... 25 Verdensarv Vadehavet ............................ 6 Brandingmanual ............................ 7 Brug af logo ........................................................................ 26 Brandingfakta-ark ......................... 7 Kommerciel brug - varemærkelicensaftale .............................. 28 Præsentationsslides ..................... 7 Ikke-kommerciel brug ............................... 28 Markedsføringsmateriale ..................... 8 Redaktionelt indhold ................. 28 Plakater .................................................... 9 In-side logo ........................................ 28 Brochure ................................................. 10 ............................................ 29 Annonce .................................................. 12 Merchandise med logo Video ......................................................... 13 Online Banner .................................... 14 Udstillingspaneler -
Butaclor, Oxicloruro De Cobre Y Clorpirifos) Sobre El Anfípodo Bentónico Marino Apohyale Grandicornis (Kroyer, 1845) (Crustacea: Hyalidae)
UNIVERSIDAD RICARDO PALMA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA ACADÉMICO PROFESIONAL DE BIOLOGÍA Toxicidad aguda de tres plaguicidas (Butaclor, Oxicloruro de cobre y Clorpirifos) sobre el anfípodo bentónico marino Apohyale grandicornis (Kroyer, 1845) (Crustacea: Hyalidae) TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE LICENCIADA EN BIOLOGÍA Diana Lina Sotelo Vásquez Lima-Perú 2018 Dedicatoria Dedico esta tesis a Dios y a la Virgen María, quienes inspiraron mi espíritu para la conclusión de esta tesis y quienes pusieron en mi camino a todas esas personas que me alentaron a terminarla. A mi familia que siempre creyó en mí, quienes me apoyaron y dieron animo en todo momento. Para todos ellos hago esta dedicatoria. AGRADECIMIENTOS Agradezco a mi director de tesis. El Dr. Iannacone Oliver José, por su asesoramiento, paciencia y gran disponibilidad en el transcurso de esta tesis. Al Mgtr. Christian Paredes, jefe del área ecotoxicología en el Instituto del mar del Perú (IMARPE), por su guía al inicio de esta tesis y por proporcionar el ambiente y materiales necesarios para la realización práctica de la tesis. A la Mg. Analí Jiménez, investigadora del IMARPE, por su apoyo en la identificación del anfípodo. Finalmente, agradecer a mi mamá, papá, abuela, hermano, comunidad y amigas por su apoyo, oraciones y aliento constante. RESUMEN Los plaguicidas han sido enormemente utilizados desde tiempos antiguos, en la agricultura para la protección de cultivos del ataque de plagas. Sin embargo, la mayoría de estos genera una alta contaminación ambiental; y a pesar de la regulación, estos siguen llegando por diferentes vías a las aguas marinas. El presente trabajo evaluó la toxicidad de tres plaguicidas de uso comercial en el Perú: el herbicida Butaclor, el insecticida Clorpirifos y el fungicida Oxicloruro de Cobre, sobre el anfípodo marino Apohyale grandicornis (Krøyer, 1845).