Legacy Systems As a Security Risk

Total Page:16

File Type:pdf, Size:1020Kb

Legacy Systems As a Security Risk 1 Legacy Systems as a Security Risk CONTENTS For anyone who has spent any time in IT operations, the topic of legacy systems Monthly Article and the trouble they cause has almost certainly come up. From cost, to utility, to expertise, there are many reasons that these systems inevitably remain in place Legacy Systems as a Security and in service long after their originally projected lifespan. The cycle is Risk................................P.1-2 predictable. IT operations warns the business of the dire consequences to Updates uptime and reliability if the systems are not updated, yet the system remains in NSOC Update.................P.2-3 service. They will discuss the increasingly costly maintenance, or the inability to OCISO Updates..............P.3-4 make adjustments to the system because there is no one who knows how the Bad Rabbit.........................P.4 system works. Still the system remains as is. ISO Spotlight: IT could use an ally. Charlotte Russell.............P.5-7 In security, a similar discussion is unfolding. With a rash of global-scale cybersecurity events this year, such as the WannayCry ransomware epidemic, the release of the NSA’s catalog of weaponizable system exploits, and the EVENTS resurgence of Apache Struts vulnerabilities, the issue of un-patched systems is Microsoft Azure getting fresh attention. More specifically, the fact that many systems are not only un-patched, but actually un-patchable, is starting to be discussed in terms Hackfest + Training - that are well-known across every enterprise: Technical debt. IT may finally have November 7 the ally they have been looking for as the security community zeroes in on this • DIR Calendar Link problematic class of risky systems. This is not a new issue. A quick search of the topic brings up article results dating DIR Monthly Webinar - back to at least 2002 which detail the struggle facing CIOs in dealing with legacy November 15: Machine systems (which includes server and desktop systems alike). While the struggle Learning/AI: Hard Facts, historically focuses around the IT operations space and the typical stated need Conclusions and Actions for ease of maintenance and reliable uptime, there is a new focus on modernizing legacy systems. The reason is simple: security. • 12:00 – 1:00 pm For security, technical debt comes in two forms. The first is built into new systems and software that are hastily built and deployed without due diligence to ensure proper security. The second is more insidious. It grows and becomes apparent as the system ages. Every Microsoft user can relate to the need for, and frustration with, frequent product updates. Servers, tablets, desktops, and applications alike - they all need to be updated for both operational and security reasons. So what happens when the updates slow down and eventually stop? The threats do not. This is the technical debt of legacy. Every time a system goes out of date, either temporarily or permanently it introduces 2 additional risk which must be handled or accepted. In the past, the approach has been accepting these risks. That approach seems to be shifting when this risk is EVENTS, cont. posed as a security issue, and with good reason. No one wants to be in the next Innotech Conference - headline for a preventable incident. November 16 @ Austin Of course, it is not as simple as waving a magic security stick and remediating or replacing the systems. Usually, replacing or updating a legacy system requires Convention Center massive planning, methodical execution, business buy-in, and lots of funding. In • http://www.innotechco many cases an organization will a more difficult time than if a system was just nferences.com/austin/ replaced. They will need to take an inventory of what systems they have that • Innotech is offering might need to be remediated as many organizations do not even know what all free admission of legacy systems are in use. Some organizations are doing just that. A study of public sector staff with federal systems presented to the US Congress in May 2016 highlighted the issues at the federal level and declared the pervasive reliance on obsolete the coupon DIR99 technology to be a “ticking time bomb.” e-Records Conference - The problem is not limited to the federal government, or any sector for that November 17 @ JJ Pickle matter. Legacy systems modernization is a challenge facing every application of Conference Center modern computing across all sectors and it is a huge concern. As anyone who has spent any time in security knows, it only takes one open door to let an • DIR Calendar Link attacker in, and that door does not have to belong to the victim. It can belong to a trusted partner, a hapless client, or a well-meaning insider. If there is a way, a determined foe will find it. After recognizing the problem, assessing the risk, and determining that the stakes are just too high, it is time to take action. Security is uniquely positioned to help IT do just that. Security departments and practitioners have a unique set of tools and skills. Security is tasked with identifying and, when possible, remediating risk. It is what frequently sets them aside from their IT operations counterparts. While identifying, understanding, and classifying risks is a daily task for security, it is not so for operations. Operations relies on a CMDB and processes to understand what they have and in what state those things exist (in terms of configuration and operationalization). Security does exactly the opposite, frequently starting with a blank slate and methodically testing, prodding, poking and documenting the systems on their network. In other words, security takes an inventory… exactly what IT needs to kick off their efforts. The next thing security frequently does is monitor those systems for abnormal behavior and check them for known vulnerabilities. This means that security has the information IT needs to prioritize which systems should be remediated first, a crucial early step in the meticulous planning process mentioned previously. Security is also another voice that can speak up and assist IT as they move to eliminate the technical debt aged in by legacy systems. NSOC Update: WIFI KRACK...is the sky falling? As many of you are aware, a new zero-day vulnerability in WIFI’s WPA2 protocol named KRACK was recently made public. WPA2 is the authentication and encryption protocol for securing wireless network connections/sessions. The vulnerability isn’t an issue with configuration but is a design flaw within the protocol. And everyone is wondering what this means to WIFI users and networks. WPA2 uses a 4-way handshake to establish a secure connection between a device and access point via a known password. The first two handshakes authenticate the device and access point via the password. The third handshake generates a key that will be used by both sides to encrypt and decrypt the wireless communications. It is this third 3 handshake that is vulnerable to attack. The attackers would reinstall a key they know in his handshake. If successful, the connection is granted. The attacker has full sight of the WIFI connections without even joining the network. From here they can carry out any number of attacks, including network sniffing, man-in-the-middle, etc. This attack where they reinstall the key is called a Key Re-installment Attack or KRACK. Is the sky falling? Are all WIFI networks at risk? Are there patches to remediate this vulnerability? No. No. In some cases, yes, and in some cases, no. No, the sky isn’t falling. Let’s consider the actual attack vector and attack in today’s environment. First, this is a WIFI attack. This means the attacker must be in close proximity of your WIFI network to be able to access it. This greatly reduces the number of attackers that can take advantage of this vulnerability. Secondly, this vulnerability has NOT been exploited in the wild yet. According to researchers, this is a very sophisticated and complex vulnerability to successfully exploit. And there is not a hacking tool available today that exploits this vulnerability for you. Since the exploiting of KRACK takes some expertise, this again greatly reduces the number of attackers that can pull off a KRACK attack. So in terms of immediate threats, the risk is low. The sky isn’t falling. No, not all WIFI networks are vulnerable. The researchers that discovered this vulnerability made the manufacturers aware months ago before announcing it publicly. Many of the operating systems have been fixed. The newer versions of Windows and iOS are unaffected. Many products by Apple, Cisco, Fortinet, Intel and Linux have already had patches made or are in progress of being made. The patches that are being produced limit the WPA2 protocol and prevent the key from being re-installed. The most serious impact of KRACK is on Android and the Internet of Things (IoT). The other serious impact is to the small cable modem/WIFI Router combo devices used by most homes and small businesses. Think of devices like Netgear and Linksys cable modems sitting in your living room. These devices are high volume, low cost, static devices that are not easily upgraded or patched. Considering the difficulty of successfully exploiting KRACK at this time, the risk remains low even at Starbucks. However, that will change when tools that can exploit KRACK hit the black market. Once this happens, the risk elevates for Android devices, old cable modem/routers, and IoT devices like WIFI security cameras. So, this isn’t a complete security breakdown for WIFI. At this point in time, it isn’t even a high-risk threat. As we move forward, we would hope that the bigger businesses operating over WIFI will upgrade their equipment to remove this threat.
Recommended publications
  • Systematization of Vulnerability Discovery Knowledge: Review
    Systematization of Vulnerability Discovery Knowledge Review Protocol Nuthan Munaiah and Andrew Meneely Department of Software Engineering Rochester Institute of Technology Rochester, NY 14623 {nm6061,axmvse}@rit.edu February 12, 2019 1 Introduction As more aspects of our daily lives depend on technology, the software that supports this technology must be secure. We, as users, almost subconsciously assume the software we use to always be available to serve our requests while preserving the confidentiality and integrity of our information. Unfortunately, incidents involving catastrophic software vulnerabilities such as Heartbleed (in OpenSSL), Stagefright (in Android), and EternalBlue (in Windows) have made abundantly clear that software, like other engineered creations, is prone to mistakes. Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. Developers leverage a plethora of processes, techniques, and tools such as threat modeling, static and dynamic analyses, unit/integration/fuzz/penetration testing, and code reviews to engineer secure software. These practices, while effective at identifying vulnerabilities in software, are limited in their ability to describe the engineering failures that may have led to the introduction of vulnerabilities. Fortunately, as researchers propose empirically-validated metrics to characterize historical vulnerabilities, the factors that may have led to the introduction of vulnerabilities emerge. Developers must be made aware of these factors to help them proactively consider security implications of the code that they contribute. In other words, we want developers to think like an attacker (i.e. inculcate an attacker mindset) to proactively discover vulnerabilities.
    [Show full text]
  • Implementation and Analysis of Key Reinstallation Attack
    International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.133.21 Implementation and Analysis of Key Reinstallation Attack Saba Khanum1, Ishita kalra2 1Department of Information Technology, MSIT, Janakpuri, New Delhi, India 2Department of Computer Science and Engineering, MSIT, Janakpuri, New Delhi, India Abstract- The objective of the paper is to implement and analyzed the impact of Key Reinstallation Attack (popularly dubbed as KRACK) on debian based machines. The paper elucidates on the capture of packets through the attack without being a part of the network and affecting the target machines with the help of an attack machine placed inside the network. It basically exploits the nonce of the network which ultimately paves way to the execution of the attack. The issue tends to gather more eyeballs as it affects all devices using Wi-Fi through WPA2 protocol. Hence, the catastrophe complimented along the attack is severe. The analysis of the impact is carried on by analyzing the type of packets visible as well as captured during the course of the implementation. Here, we have created a python script which identifies whether the targeted machine is vulnerable to KRACK or not and corresponding to that the packet capture starts and ultimately, the impact is measured. Keywords – KRACK, weakness, WPA2, attack, security I. INTRODUCTION The presence of the bug has been detected in the cryptographic nonce of the WPA2 and can be used to clone a connected party to reinstall a used key. The presence of the nonce is specifically intended to prevent reuse, but in this particular case, it gives malicious users the opportunity to replay, decrypt, or forge packets, ultimately enabling them to access all previously considered encrypted information without actually being part of the network.
    [Show full text]
  • Catalogue Formations (PDF)
    Page 2 L’intégrale VERISAFE Véritable cursus de formation en Cybersécurité : 120 heures de formation, 850 vidéos & 4200 slides La cybercriminalité fait peser une menace grandissante sur tous les organismes (privés ou pu- blics) et sur chaque citoyen. Pour lutter efficacement contre ce fléau, il est important de bien comprendre le phénomène et de l’anticiper. Illustrée par des exemples réels, cette formation détaille le monde cybercriminel (organisation, acteurs, motivations, techniques d’attaques, moyens financiers et humains,…). Elle présente également les acteurs et les dispositifs juri- diques pour lutter contre les cybercriminels au niveau national comme au niveau international. Face une véritable pénurie en matière de compétences en matière de sécurité Cloud, la certifi- cation CCSK de la Cloud Security Alliance est devenue la certification internationale la plus re- cherchée et se place désormais à la 1er place en matière de rémunération (Source : Certificate Magazine). Cette formation intensive a été spécialement conçue pour préparer et obtenir cette certification en 30 jours. Ransomware, espionnage économique ou scientifique, fuites de données à caractère person- nel,… le nombre de cyberattaques ne cesse d’augmenter en France et dans le monde. La ques- tion n’est donc pas de savoir si votre organisme sera attaqué mais plutôt comment répondre efficacement à ces attaques. Cette formation répond à toutes les préoccupations actuelles et dresse l’état de l’art en matière de cybersécurité à destination des entreprises et des adminis- trations. C’est la formation Cybersécurité le plus suivie en France avec 18 sessions en présentiel et plus de 316 participants en 2019. Cette formation intensive permet d’acquérir toutes les compétences nécessaires pour devenir un professionnel de la cybersécurité reconnu sur le marché.
    [Show full text]
  • Digitaalisen Kybermaailman Ilmiöitä Ja Määrittelyjä
    DIGITAALISEN KYBERMAAILMAN ILMIÖITÄ JA MÄÄRITTELYJÄ PROF. MARTTI LEHTO V 15.0 6.4.2021 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2021 ALKUSANAT Euroopan komissio analysoi pohdinta-asiakirjassaan kesällä 2017 tulevaisuuden uhka- maailmaa. Sen mukaan teknologian kehitys muuttaa merkittävästi niin turvallisuuden kuin puolustuksen luonnetta. Big data, pilviteknologia, miehittämättömät ajoneuvot ja tekoäly muokkaavat yhteiskunnan eri rakenteita aina turvallisuuteen ja puolustukseen saakka. Tämän verrattain helposti saatavilla olevan teknologian käyttö mahdollistaa epätavanomaisten, valtioiden rajat ylittävien ja epäsymmetristen uhkien nopean kas- vun. Näitä ovat muun muassa hybridi- ja kyberuhat, terrorismi sekä kemialliset, biologi- set ja radiologiset iskut. Internetin käyttäjien määrän nopean kasvun myötä kyberrikol- lisuus ja terroristien internetin käyttö ovat 2000-luvulla muokanneet merkittävästi digi- taalista toimintaympäristöä.1 Digitaaliteknologia muuttaa ihmisten elämää. EU:n digitaalistrategian tavoitteena on valjastaa digitalisaatio palvelemaan ihmisiä ja yrityksiä sekä tukemaan tavoitetta tehdä Euroopasta ilmastoneutraali vuoteen 2050 mennessä. Komissio on päättänyt tehdä ku- luvasta vuosikymmenestä Euroopan "digitaalisen vuosikymmenen". Euroopan on nyt lu- jitettava digitaalista suvereniteettiaan ja asetettava standardeja sen sijaan, että se kul- kisi muiden jäljissä. Painopisteinä ovat data, teknologia ja infrastruktuuri.2 Euroopan komissio ja unionin ulkoasioiden ja turvallisuuspolitiikan korkea edustaja esit-
    [Show full text]
  • Cyber-Resilience
    CYBER-RESILIENCE: THE KEY TO BUSINESS SECURITY Panda Security Summit | Cyber-resilience: the key to business security 2 Introduction and summary 3 The evolution of cyberthreats 5 Challenges for organizations to become cyber-resilient 7 Adoption of cyber-resilience 13 Characteristics of cyber-resilient companies 18 Conclusions 22 Panda Security Summit | Cyber-resilience: the key to business security 3 Introduction and summary goals and integrity against the latent threat of cybersecurity attacks. A cyber-resilient company is one that can prevent, A quick Google search of the term “resilient detect, contain and recover, minimizing exposure companies” turns up 44,400,000 results in less to an attack and its impact on business, against than a second. This concept, defined as “the countless threats to data, applications, and IT capacity to recover quickly from difficulties infrastructure. And especially against devices, and come out stronger”, has become key to where the organization’s most valuable assets businesses that face a large number of risks reside, since reaching them also implies attacking born from the context of a global economy: from the integrity of identities and users. cyberattacks to large-scale, global fraud and theft of personal data, to the potential adverse effects of technological advances such as artificial As hazards increase, traditional approaches to intelligence, geoengineering, and synthetic biology maintaining cyber-resilience are no longer enough. that can affect the environment, the economy, and Many entities survive in a precarious equilibrium, ultimately human beings themselves. and the slightest alteration, however small in relation to the size of the organization or the importance of its activities, can precipitate a crisis.
    [Show full text]
  • Factor Authentication
    THIS COMPUTER HAS BEEN…. WHAT DO I DO NOW? Paul Seldes, FPEM, CEM, FMI ntb group, LLC Director of Operations I DON’T HAVE TO BE HERE RANSOMWARE DEFINED Ransomware is a type of malicious software used by cybercriminals that is designed to extort money from their victims, either by • Encrypting data on the disk or OR • By blocking access to the system CAN IT HAPPEN TO ME? 56% increase in ransomware attacks 2018-2019 (DHS- CISA) $84,000 typical cost of recovery $6 TRILLION cybercrime global costs by 2021 HOW IT WORKS RANSOMWARE IS A GROWTH INDUSTRY Cost of ransomware to the US in 2019 was $7.5 billion Ransomware attacks are also known as BGH 2020: $10 billion ? 2021: $15 billion? 2022: $20 billion? CRYPTOLOCKER – FIRST GLOBAL RANSOMWARE CAMPAIGN 500,000 victims Between $3 and $27 million in payments June 2014 CRYPTOLOCKER – FIRST GLOBAL RANSOMWARE CAMPAIGN There is a $3 million reward for information leading to his arrest (FBI) June 2014 AND SO IT GOES Over 100 variants between 2014 and 2019. WANNACRY – MAY 2017 WORLDWIDE ATTACK In order to spread like a worm, utilized an exploit called ETERNALBLUE, one of the leaked NSA hacking tools released by the Shadow Brokers hacking group in April 2017 The patch for the vulnerability was available for 59 days prior to the attack Hit critical infrastructure in some countries such as Germany and Russia. In the U.K., the health care sector received a hard hit: hospitals had to turn away patients, reroute ambulances, paralyze emergency services, and reschedule surgeries and appointments WANNACRY – MAY 2017 WORLDWIDE ATTACK In order to spread like a worm, utilized an exploit called ETERNALBLUE, one of the leaked NSA hacking tools released by the Shadow Brokers hacking group in April 2017 The patch for the vulnerability was available for 59 days prior to the attack Hit critical infrastructure in some countries such as Germany and Russia.
    [Show full text]
  • Analyzing Cryptographic Vulnerabilities on Hackerone
    Analyzing Cryptographic Vulnerabilities on HackerOne Atefeh Fakhari Seminar Software Composition, MCS 2020 Supervisor : Mohammadreza Hazhirpasand 1 Objective We are interested in looking for what types of cryptographic vulnerability exist on HackerOne. 2 What is HackerOne? Hacker finds a vulnerability Hacker submits it to the Company rewards the hacker company via their Security page 3 HackerOne 4 Data extraction with python 5 Dataset 9311 Hacktivity 3160 Hackers 315 Companies 5,342,500 6 Top 20 hackers Top hackers based on the total money earned Top hacker based on the total bug report 100000 70 120 80000 90000 70000 60 100 80000 60000 50 70000 80 50000 60000 40 50000 60 40000 30 40000 30000 40 30000 20 20000 20000 20 10 10000 10000 0 0 0 0 Reward earnedSeries1 Series2Number of bug Reward earnedSeries1 Series2Number of bug 7 Top 20 companies Mail.ru 684 HackerOne 433 U.S. Dept Of Defense 352 Shopify 335 Node.js third-party modules 291 Nextcloud 290 PHP (IBB) 251 Twitter 221 New Relic 195 Uber 187 Shopify-scripts 161 Legal Robot 154 GitLab 148 Weblate 139 Gratipay 136 VK.com 126 Starbucks 125 Zomato 114 Slack 110 LocalTapiola 105 0 100 200 300 400 500 600 700 800 Number of Bug 8 Analyzing cryptographic vulnerability 9 Weaknesses There are 121 unique weaknesses 10 Weaknesses 11 Crypto bug types Clear text transfer / Mix content https-http 25 Certificates related problems (validation, CAA .. ) 21 Weak crypto defaults / Default encryption password and salt 18 The POODLE attack 13 The side channel attacks / The timing attacks 11 Secret key
    [Show full text]
  • Bluekeep Update 12/05/2019
    BlueKeep Update 12/05/2019 Report #: 201912051000 Agenda • What is BlueKeep • Timeline of BlueKeep • BlueKeep Today • Initial Attempts to Exploit BlueKeep • Why Initial Attempts Failed • BlueKeep Tomorrow • Mitigations • Indicators of Compromise (IOCs) • HC3 Contact Information • References Slides Key: Non-Technical: managerial, strategic and high-level (general audience) Technical: Tactical / IOCs; requiring in-depth knowledge (sysadmins, IRT) TLP: WHITE, ID# 201912051000 2 What is BlueKeep • BlueKeep (CVE-2019-0708) • Vulnerability in Microsoft’s (MS) Remote Desktop Protocol • Grants hackers full remote access and code execution on unpatched machines • No user interaction required • Essential owns the machine, malicious actor can do as they please • Affects: Windows XP, 7, Server 2003, Server 2008, and Server 2008 R2 • Deja Blue(Related BlueKeep Vulnerabilities) affects: Windows 8, 10, and all older windows versions • EternalBlue affects: Server Message Block version 1 (SMBv1) • “Wormable” meaning it has the ability to self propagate (think WannaCry level of damage) • MS, NSA, DHS, many other security vendors released advisories and warning on this exploit TLP: WHITE, ID# 201912051000 3 BlueKeep Timeline Metasploit Team Microsoft Released Patch: DHS Tested a Working BlueKeep Scanner Significant Uptick in Releases BlueKeep Coin Miner Exploit CVE-2019-0708 Exploit Against W2000 Discovered in Malicious RDP Activity Exploit Module BlueKeep Vulnerability Watchdog Malware 34 Days (Private Exploit) 70 Days (Semi-Public Exploit) 115 Days (Public
    [Show full text]
  • Protecting Enterprise an Examination of Bugs, Major Vulnerabilities and Exploits
    ESET Research White Papers // April 2018 Protecting Enterprise An examination of bugs, major vulnerabilities and exploits Author Tony Anscombe Contributing researchers Anton Cherepanov Aryeh Goretsky Ondrej Kubovič Robert Lipovský Miguel Ángel Mendoza Diego Perez Protecting Enterprise: An examination of bugs, major vulnerabilities and exploits CONTENTS Executive summary 2 Bugs, vulnerabilities & exploits 2 The vulnerability trend 4 Major security vulnerabilities & attacks 5 EternalBlue 6 WannaCryptor 7 CoinMiner 9 Diskcoder (aka Petya) 10 Meltdown & Spectre 12 The risk to infrastructure 13 Protecting the enterprise 15 Updating (aka Patching) 16 Protection layers 16 2 Protecting Enterprise: An examination of bugs, major vulnerabilities and exploits EXECUTIVE SUMMARY This white paper focuses on the dramatic but whose updates have not been installed across growth in the number and severity of whole organizations. Both WannaCryptor and software vulnerabilities, and discusses how Diskcoder affected organizations worldwide multilayered endpoint security is needed despite operating system updates being to mitigate the threats they pose. available. ESET detected and blocked malware taking advantage of the EternalBlue exploit. Exploits of critical vulnerabilities such as EternalBlue have been utilized to devastating The purpose of this white paper is to help users effect. In 2017, EternalBlue alone spawned understand why no single technology or mix of WannaCryptor, CoinMiner and Diskcoder (aka technologies will guarantee that a network will Petya). In 2018, the security community has not be compromised and why the cybersecurity come to realize the extent of CPU architecture industry, including ESET, constantly refines vulnerabilities. Also, there is a growing products both reactively and proactively, acceptance that most older infrastructure adding layers to ensure effective security.
    [Show full text]
  • Invisimole: the Hidden Part of the Story Unearthing Invisimole’S Espionage Toolset and Strategic Cooperations
    ESET Research white papers TLP: WHITE INVISIMOLE: THE HIDDEN PART OF THE STORY UNEARTHING INVISIMOLE’S ESPIONAGE TOOLSET AND STRATEGIC COOPERATIONS Authors: Zuzana Hromcová Anton Cherepanov TLP: WHITE 2 InvisiMole: The hidden part of the story CONTENTS 1 EXECUTIVE SUMMARY � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 2 ATTACKS AND INVESTIGATION � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 2.1 InvisiMole’s toolset ������������������������������������������������������������������������������������������������������������������������ 5 2.2 Cooperation between InvisiMole and Gamaredon . 5 3 BUILDING BLOCKS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6 3.1 Structure ������������������������������������������������������������������������������������������������������������������������������������������6 3.1.1 InvisiMole blobs . 6 3.1.2 Execution guardrails with DPAPI ���������������������������������������������������������������������������������7 3.2 Payload ��������������������������������������������������������������������������������������������������������������������������������������������8 3.2.1 TCP downloader ��������������������������������������������������������������������������������������������������������������9 3.2.2 DNS downloader . 9 3.2.3 RC2CL backdoor �������������������������������������������������������������������������������������������������������������13
    [Show full text]
  • A Survey on Connected Vehicles Vulnerabilities and Countermeasures
    Journal of Traffic and Logistics Engineering Vol. 6, No. 1, June 2018 A Survey on Connected Vehicles Vulnerabilities and Countermeasures Caleb Riggs, Carl-Edwin Rigaud, Robert Beard, Tanner Douglas, and Karim Elish Florida Polytechnic University 4700 Research Way Lakeland, FL, 33805 Email: {criggs2892, carledwinrigaud0841, rbeard3043, Tannerdouglas0256, kelish}@floridapoly.edu Abstract—With the growing ease of connecting a vehicle and Bluetooth Security Mode 1: This mode is non- other technologies to the Internet, the need for security is secure. The authentication and encryption growing. In a connected vehicle, there are many different functionality are bypassed, and the device is connections and therefore many different systems can be susceptible to hacking. Security Mode 1 is only exploited. In this paper, we shed the light on the security of several features of connected vehicles to determine whether supported up to Bluetooth 2.0 + EDR and not or not they are vulnerable to attacks and identify possible beyond. mitigations. We focus on four features, namely, Bluetooth, Bluetooth Security Mode 2: For this Bluetooth OBD (On Board Diagnostics) System, Infotainment System, security mode, a centralized security manager and OTA (Over the air). controls access to specific services and devices. The Bluetooth security manager maintains policies Index Terms—Connected vehicle, Vulnerability, OTA (Over for access control and interfaces with other the Air), OBD (On Board Diagnostics), Infotainment, protocols and device users. Telematics Bluetooth Security Mode 3: In this mode, the Bluetooth device initiates security procedures I. INTRODUCTION before any physical link is established. The There are many issues to consider when thinking about authentication and encryption are used for all putting autonomous connected vehicles on the road.
    [Show full text]
  • Introduction
    Hearing on “Complex Cybersecurity Vulnerabilities: Lessons Learned from Spectre and Meltdown” Written Testimony of Art Manion Vulnerability Analysis Technical Manager, CERT/CC Carnegie Mellon University Software Engineering Institute Before the U.S. Senate Committee on Commerce, Science, and Transportation July 11, 2018 Introduction Chairman Thune and Ranking Member Nelson, thank you for the opportunity to appear before the Senate Committee on Commerce, Science, and Transportation to discuss Complex Cybersecurity Vulnerabilities, specifically some of the challenges and lessons from the Meltdown and Spectre disclosures. I am currently the Vulnerability Analysis Technical Manager at the CERT Coordination Center (CERT/CC), part of Carnegie Mellon University’s Software Engineering Institute (SEI).1 The SEI is a Department of Defense Federally Funded Research and Development Center (FFRDC). The SEI conducts research and development in software engineering, systems engineering, cybersecurity, and many other areas of computing, working to transition new and emerging innovations into government and industry. The SEI holds a unique role as the only FFRDC sponsored by the DoD that is also authorized to work with organizations outside of the DoD. We work with partners throughout the U.S. government, the private sector, and academia. Much of the vulnerability analysis work at the CERT/CC over the past 30 years has focused on Coordinated Vulnerability Disclosure (CVD). This is the practice of reporting newly discovered vulnerabilities to vendors (and/or
    [Show full text]