Pseudoscorpion Mitochondria Show Rearranged Genes and Genome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Mites of the Genus Arrenurus (Acari; Hydrachnida) from Europe and North America
Department of Animal Morphology Institute of Environmental Biology Adam Mickiewicz University Mariusz Więcek EFFECTS OF THE EVOLUTION OF INTROMISSION ON COURTSHIP COMPLEXITY AND MALE AND FEMALE MORPHOLOGY: WATER MITES OF THE GENUS ARRENURUS (ACARI; HYDRACHNIDA) FROM EUROPE AND NORTH AMERICA Mentors: Prof. Jacek Dabert – Institute of Environmental Biology, Adam Mickiewicz University Prof. Heather Proctor – Department of Biological Sciences, University of Alberta POZNAŃ 2015 1 ACKNOWLEDGEMENTS First and foremost I want to thank my mentor Prof. Jacek Dabert. It has been an honor to be his Ph.D. student. I would like to thank for his assistance and support. I appreciate the time and patience he invested in my research. My mentor, Prof. Heather Proctor, guided me into the field of behavioural biology, and advised on a number of issues during the project. She has been given me support and helped to carry through. I appreciate the time and effort she invested in my research. My research activities would not have happened without Prof. Lubomira Burchardt who allowed me to work in her team. Many thanks to Dr. Peter Martin who introduced me into the world of water mites. His enthusiasm was motivational and supportive, and inspirational discussions contributed to higher standard of my research work. I thank Dr. Mirosława Dabert for introducing me in to techniques of molecular biology. I appreciate Dr. Reinhard Gerecke and Dr. Harry Smit who provided research material for this study. Many thanks to Prof. Bruce Smith for assistance in identification of mites and sharing his expert knowledge in the field of pheromonal communication. I appreciate Dr. -
Information to Users
INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D. -
Introduction to Arthropod Groups What Is Entomology?
Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders, -
The Role of Microhabitats in Structuring Cave Invertebrate Communities in Guatemala Gabrielle S.M
International Journal of Speleology 49 (2) 161-169 Tampa, FL (USA) May 2020 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie The role of microhabitats in structuring cave invertebrate communities in Guatemala Gabrielle S.M. Pacheco 1*, Marconi Souza Silva 1, Enio Cano 2, and Rodrigo L. Ferreira 1 1Universidade Federal de Lavras, Departamento de Ecologia e Conservação, Setor de Biodiversidade Subterrânea, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil 2Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad Universitaria, Zona 12, 01012, Guatemala City, Guatemala Abstract: Several studies have tried to elucidate the main environmental features driving invertebrate community structure in cave environments. They found that many factors influence the community structure, but rarely focused on how substrate types and heterogeneity might shape these communities. Therefore, the objective of this study was to assess which substrate features and whether or not substrate heterogeneity determines the invertebrate community structure (species richness and composition) in a set of limestone caves in Guatemala. We hypothesized that the troglobitic fauna responds differently to habitat structure regarding species richness and composition than non-troglobitic fauna because they are more specialized to live in subterranean habitats. Using 30 m2 transects, the invertebrate fauna was collected and the substrate features were measured. The results showed that community responded to the presence of guano, cobbles, boulders, and substrate heterogeneity. The positive relationship between non-troglobitic species composition with the presence of guano reinforces the importance of food resources for structuring invertebrate cave communities in Guatemalan caves. -
Description of the Adult Male of Pseudocellus Pachysoma Teruel & Armas 2008 (Ricinulei: Ricinoididae)
Revista Ibérica de Aracnología, nº 24 (30/06/2014): 75–79. ARTÍCULO Grupo Ibérico de Aracnología (S.E.A.). ISSN: 1576 - 9518. http://www.sea-entomologia.org/ DESCRIPTION OF THE ADULT MALE OF PSEUDOCELLUS PACHYSOMA TERUEL & ARMAS 2008 (RICINULEI: RICINOIDIDAE) Rolando Teruel1 & Frederic D. Schramm2 1 Centro Oriental de Ecosistemas y Biodiversidad (Bioeco), Museo de Historia Natural "Tomás Romay". José A. Saco # 601, esquina a Barnada; Santiago de Cuba 90100. Cuba – [email protected] 2 Wehrdaer Weg 38a; Marburg 35037. Germany – [email protected] Abstract: The adult males of the Cuban endemic ricinulid Pseudocellus pachysoma Teruel & Armas 2008 are herein described on the basis of a sample recently collected in a cave locality of northern Guantánamo province. As a result, the taxonomic diagnosis of this species is updated and further data on its morphological, morphometric and chromatic variability are given. Also, its habitat and microhabitat are described, as well as some aspects about its behavior under both natural and captive conditions. Key words: Ricinulei, Ricinoididae, Pseudocellus, Cuba. Descripción del macho adulto de Pseudocellus pachysoma Teruel & Armas 2008 (Ricinulei: Ricinoididae) Resumen: Se describen los machos adultos del ricinuleido endémico cubano Pseudocellus pachysoma Teruel & Armas 2008, so- bre la base de un lote capturado recientemente en una localidad cavernaria del norte de la provincia de Guantánamo. Como con- secuencia, se actualiza la diagnosis taxonómica de esta especie y se aportan datos adicionales sobre su variabilidad morfológica, morfométrica y cromática. Además, se describe su hábitat y microhábitat, así como algunos aspectos de su comportamiento en condiciones naturales y de cautividad. Palabras clave: Ricinulei, Ricinoididae, Pseudocellus, Cuba. -
Phylogenomic Analysis and Revised Classification of Atypoid Mygalomorph Spiders (Araneae, Mygalomorphae), with Notes on Arachnid Ultraconserved Element Loci
Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci Marshal Hedin1, Shahan Derkarabetian1,2,3, Adan Alfaro1, Martín J. Ramírez4 and Jason E. Bond5 1 Department of Biology, San Diego State University, San Diego, CA, United States of America 2 Department of Biology, University of California, Riverside, Riverside, CA, United States of America 3 Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America 4 Division of Arachnology, Museo Argentino de Ciencias Naturales ``Bernardino Rivadavia'', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 5 Department of Entomology and Nematology, University of California, Davis, CA, United States of America ABSTRACT The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non- Submitted 1 February 2019 orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Accepted 28 March 2019 Published 3 May 2019 Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages. -
Pseudoscorpions
Colorado Arachnids of Interest Pseudoscorpions Class: Arachnida Order: Pseudoscorpiones Identification and Descriptive Features: Pseudoscorpions are tiny arachnids (typically Figure 1. Pseudoscorpion ranging from 1.25-4.5 mm body length). They possess pedipalps modified into pincers in a manner similar to scorpions. However, they differ in other features, notably possessing a broad, flattened abdomen that lacks the well developed tail and stinger. Approximately 200 species of pseudoscorpions have been described from North America. A 1961 review of pseudoscorpions within Colorado listed 30 species; however, these arachnids have only rarely been subjects for collection so their occurrence and distribution within Colorado is poorly known. The pseudoscorpion most often found within buildings is Chelifer cancroides, sometimes known as the “house pseudoscorpion”. It is mahogany brown color with a body length of about 3-4 mm and long pedipalps that may spread 8 mm across. Distribution in Colorado: Almost all pseudoscorpions that occur in Colorado are associated with forested areas although a few prairie species do occur. Conifer forests, including scrublands of pinyon and juniper, support several species. Others occur in association with Gambel oak and aspen. The house pseudoscorpion has an unusually broad distribution and is found associated with human dwellings over wide areas of North America and Europe. Life History and Habits: Pseudoscorpions usually occur under rocks, among fallen leaves or needles, under bark or similar moist sites where they hunt mites, springtails and small insects. Typically they wait in ambush within small crevices and grab passing prey with the pincers. In most species, connected to the movable “finger” of the pincer is a venom gland. -
Geological History and Phylogeny of Chelicerata
Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while -
Phylum Arthropoda*
Zootaxa 3703 (1): 017–026 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:FBDB78E3-21AB-46E6-BD4F-A4ADBB940DCC Phylum Arthropoda* ZHI-QIANG ZHANG New Zealand Arthropod Collection, Landcare Research, Private Bag 92170, Auckland, New Zealand; [email protected] * In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703, 1–82. Abstract The Arthropoda is here estimated to have 1,302,809 described species, including 45,769 fossil species (the diversity of fossil taxa is here underestimated for many taxa of the Arthropoda). The Insecta (1,070,781 species) is the most successful group, and it alone accounts for over 80% of all arthropods. The most successful insect order, Coleoptera (392,415 species), represents over one-third of all species in 39 insect orders. Another major group in Arthropoda is the class Arachnida (114,275 species), which is dominated by the Acari (55,214 mite and tick species) and Araneae (44,863 spider species). Other diverse arthropod groups include Crustacea (73,141 species), Trilobitomorpha (20,906 species) and Myriapoda (12,010 species). Key words: Classification, diversity, Arthropoda Introduction The Arthropoda, with over 1.5 million described species, is the largest animal phylum, and it alone accounts for about 80% of the total number of species in the animal kingdom (Zhang 2011a). In the last volume on animal higher-level classification and survey of taxonomic richness, 28 chapters by numerous teams of specialists were published on various taxa of the Arthropoda, but there were many gaps to be filled (Zhang 2011b). -
The Complete Mitochondrial Genome of Endemic Giant Tarantula
www.nature.com/scientificreports OPEN The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis Vikas Kumar, Kaomud Tyagi *, Rajasree Chakraborty, Priya Prasad, Shantanu Kundu, Inderjeet Tyagi & Kailash Chandra The complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of fve tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identifed, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identifed. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. -
Karst Invertebrates Taxonomy
Endangered Karst Invertebrate Taxonomy of Central Texas U.S. Fish and Wildlife Service Austin Ecological Services Field Office 10711 Burnet Rd. Suite #200 Austin, TX 78758 Original date: July 28, 2011 Revised on: April 4, 2019 TABLE OF CONTENTS 1.0 INTRODUCTION .................................................................................................................... 1 2.0 ENDANGERED KARST INVERTEBRATE TAXONOMY ................................................. 1 2.1 Batrisodes texanus (Coffin Cave mold beetle) ......................................................................... 2 2.2 Batrisodes venyivi (Helotes mold beetle) .................................................................................. 3 2.3 Cicurina baronia (Robber Baron Cave meshweaver) ............................................................... 4 2.4 Cicurina madla (Madla Cave meshweaver) .............................................................................. 5 2.5 Cicurina venii (Braken Bat Cave meshweaver) ........................................................................ 6 2.6 Cicurina vespera (Government Canyon Bat Cave meshweaver) ............................................. 7 2.7 Neoleptoneta microps (Government Canyon Bat Cave spider) ................................................ 8 2.8 Neoleptoneta myopica (Tooth Cave spider) .............................................................................. 9 2.9 Rhadine exilis (no common name) ......................................................................................... -
Water Mites of the Genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia
Zootaxa 3919 (3): 401–456 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3919.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:FF49DAFE-EA8E-473B-9F3D-CEB670B4882B Water mites of the genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia PETR V. TUZOVSKIJ1& KSENIA A. SEMENCHENKO2 1Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzkii District, Yaroslavl Province, 152742 Russia. E-mail: [email protected] 2Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia. E-mail: [email protected] Table of contents Abstract . 401 Introduction . 402 Material and methods . 402 Results . 402 Family Unionicolidae Oudemans, 1909 . 402 Subfamily Unionicolidae Oudemans, 1909 . 402 Genus Unionicola Haldeman, 1842 . 403 Unionicola intermedia (Koenike, 1882) . 403 Unionicola crassipes (O.F. Müller, 1776) . 406 Unionicola rossica sp.n. 408 Unionicola figuralis (Koch, 1836) . 410 Unionicola gracilipalpis (Viets, 1908) . 413 Unionicola markovensis Tuzovskij, 1990 . 415 Unionicola minor (Soar, 1900) . 417 Unionicola hankoi Szalay, 1927 . 420 Unionicola aculeata (Koenike, 1890) . 422 Unionicola aculeatella sp.n. 424 Unionicola bonzi (Claparède, 1869) . 427 Unionicola inusitata Koenike, 1914 . 430 Unionicola rezvoi Sokolow, 1931 . 432 Unionicola samaraensis sp.n. 434 Unionicola setipella sp.n. 436 Unionicola setipes Sokolow, 1931 . 438 Unionicola tricuspis (Koenike, 1895). 441 Unionicola japonensis Viets, 1933 . 443 Unionicola primoryensis sp.n. 445 Unionicola ypsilophora (Bonz, 1783) . 448 Unionicola arcuata (Wolcott, 1898) . 451 Key to species of the genus Unionicola . 453 Acknowledgements . 454 References . 455 Abstract This study presents a detailed taxonomic review of water mites of the genus Unionicola Haldeman, 1842 (Hygrobatoidea: Unionicolidae) found in the fauna of Russia during the long-term survey period of 1969–2013.