©2009 Carlos Montemayor ALL RIGHTS RESERVED

Total Page:16

File Type:pdf, Size:1020Kb

©2009 Carlos Montemayor ALL RIGHTS RESERVED 2009 Carlos Montemayor ALL RIGHTS RESERVED THE PSYCHOLOGY OF TIME AND ITS PHILOSOPHICAL IMPLICATIONS By CARLOS MONTEMAYOR A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Philosophy Written under the direction of Prof. Alvin Goldman And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2009 ABSTRACT OF THE DISSERTATION The Psychology of Time and its Philosophical Implications By CARLOS MONTEMAYOR Dissertation Director: Alvin Goldman This dissertation offers new proposals, based on a philosophical appraisal of scientific findings, to address old philosophical problems regarding our immediate acquaintance with time. It focuses on two topics: our capacity to determine the length of intervals and our acquaintance with the present moment. A review of the relevant scientific findings concerning these topics grounds the main contributions of this dissertation. Thus, this study introduces to the philosophical literature an empirically adequate way to talk about how the mind represents time at the most fundamental level. In order to account for our immediate acquaintance with the duration of intervals, a theoretical framework for classifying clocks is used to explain why the representational outputs of the circadian clock and the stopwatch have metric structure. A philosophical analysis of these outputs is proposed to classify them and explain their properties. With respect to our immediate acquaintance with the present, a novel two-phase model of the present is proposed. This model shows that there are two forms of acquaintance with the present, which has consequences for contemporary debates in the philosophy of time. ii Acknowledgements I owe the deepest debt of gratitude to Alvin Goldman, whose careful guidance was crucial for the completion of this dissertation. Many of the ideas behind the proposals I present here became clear only after thinking about his comments to drafts of this text, which he read with great diligence. I also owe a great deal to Frankie Egan and Dean Zimmerman for suggestions that led to critical improvements. Likewise, I owe a lot to Randy Gallistel, whose work inspired many of the proposals I offer, and who was always ready to help me with clarifications and comments. I first started thinking about the topic of this dissertation because of conversations with Zenon Pylyshyn, whose work has heavily influenced the way in which I think about issues in the philosophy of mind. My interest in timing-mechanisms and metric representation greatly increased because of conversations with Rochel Gelman, Fuat Balci and Harry Haladjian. I am very grateful to all of them. I would like to thank Joseph Levine for allowing me to quote his manuscript on demonstrative thought. Thanks to Jerry Fodor, Barry Loewer, Bob Matthews and Brian McLaughlin for helpful advice. And thanks to Geoff Anders, Kate Devitt, Susan Carey, Richard Dub, Jeff Engelhardt, Carrie Figdor, Justin Fisher, Michael Johnson, Jonathan Ichikawa, Matt Katz, Dimiter Kirilov, Tania Lombrozo, Kelby Mason, Alex Morgan, Alex Jackson, Iris Oved, Georges Rey, Susan Schneider, Karen Shanton, Jason Turner, Kristy vanMarle and Stephanie Wykstra for comments to portions of this material. Thanks to my mother and sister for their unconditional support. And finally thanks to Michele for her love and constant encouragement. iii Table of Contents Abstract ………………………………………………………………………………...ii Acknowledgements ……………………………………………………………………iii List of Abbreviations …………………………………………………………………vii List of Illustrations …………………………………………………………………..viii Introduction …………………………………………………………………………….1 Chapter 1: Minding Time 1.1. Introduction ………………………………………………………………….……...3 1.2. Time: the most primitive representation …………………………………………..10 1.3. Outline of proposals ……………………………………………………………….15 Chapter 2: Periodic and Interval Clocks: The Cases of the Circadian Clock and the Stopwatch 2.1. Introduction ………………………………………………………………………..17 2.2. Records of time ……………………………………………………………………19 2.3. Periodic clocks …………………………………………………………………….22 2.4. Interval clocks ……………………………………………………………………..27 2.5. A comparison between periodic and interval clocks ……………………………...37 2.5.1. Disadvantages of periodic clocks ……………………………………………...37 2.5.2. Disadvantages of interval clocks ……………………………………………...42 2.5.3. Hybrid and semi-hybrid clocks ………………………………………………..48 2.6. The circadian clock ………………………………………………………………..51 2.6.1. Entrainment ……………………………………………………………………54 iv 2.6.2. Circadian clock representations ………………………………………………58 2.6.2.1. Navigation and the solar ephemeris function ………………………….59 2.6.2.2. Time of occurrence ……………………………………………………61 2.7. The stopwatch ………………………………………………………………….….66 Chapter 3: Sensory-Motor Representations of Time: Outputs of the Clocks 3.1. Introduction ………………………………………………………………………..76 3.2. Representation and isomorphism ………………………………………………….77 3.3. Metric structure ……………………………………………………………………88 3.3.1. The metric structure of the outputs of the circadian clock …………………….90 3.3.2. The metric structure of the outputs of the stopwatch ………………………….95 3.4. Analog clock-representations …………………………………………………….101 3.4.1. First criterion: loss of information …………………………………………...105 3.4.2. Second criterion: continuity and density ……………………………………..108 3.4.3. Third criterion: approximate representation …………………………………111 3.4.4. Fourth criterion: analog misrepresentation …………………………………..114 3.4.5. Fifth criterion: cognitive integration …………………………………………120 Chapter 4: A Two-Phase Model of The Present 4.1. Introduction ………………………………………………………………………125 4.2. Simultaneity windows ……………………………………………………………127 4.2.1. Sense-specific simultaneity windows ………………………………………..129 4.2.2. The multi-sensory integration window ……………………………………….131 4.2.3. The multi-sensory integration window and the clocks ………………………135 4.2.4. The sensorial specious present ……………………………………………….139 v 4.3. Meta-semantic mechanisms and the temporal indexical ………………………...144 4.3.1. The need for meta-semantic mechanisms ……………………………………148 4.3.2. The temporal direct-meta-semantic mechanism ……………………………..150 4.4. The phenomenal present …………………………………………………………153 4.4.1. The phenomenal specious present …………………………………………...157 4.4.2. The relation responsible for P-Unification …………………………………..163 4.5. The two-phase model of the present ……………………………………………..173 Chapter 5: Implications of my Proposals for Debates in the Metaphysics of Time 5.1. Introduction ………………………………………………………………………177 5.2. The ‘present’ in the metaphysics of time ………………………………………...181 5.3. Two senses of ‘subjective present’ ………………………………………………193 5.4. Implications of the SSP for the A-theory ………………………………………...206 5.5. Main conclusions of my dissertation …………………………………………….215 Bibliography …………………………………………………………………………218 Curriculum Vitae ……………………………………………………………………228 vi List of abbreviations (In Alphabetical Order) A-O: Action-Outcome Associations CMIP: Cross-Modal Integration Processor DMM: Direct Metasemantic Mechanism IS: Intuitive Strength (of the A-theory) OR: Openness and Retentiveness PB: Phenomenal Binding PS: Periodic Segmentation PSP: Phenomenal Specious Present RA: Representational Advantage Argument RAA: Representational Advantage of the A-theory Argument SBF: Striatal Beat Frequency Model SC: Stream of Consciousness SCN: Suprachiasmatic Nucleus SP: Scientific Plausibility (of the A-theory) S-R: Stimulus Response Associations SSP: Sensorial Specious Present TH: Truly Hybrid TMD: Temporal Mental Demonstrative TPMP: Two-Phase Model of the Present vii List of illustrations Figure 1. The Sensorial Specious Present: First component of the two-phase model: page 152. Figure 2. The Sensorial Specious Present without the Phenomenal Specious Present: page 174. viii 1 Introduction Our awareness of time permeates our lives. It is so familiar to us that we take it for granted. It is always there in our decisions and actions. It accompanies our emotions, struggles and pleasant or unpleasant experiences. Our awareness of time is, metaphorically speaking, a constant companion. Not only humans, but also animals seem to be immediately acquainted with time because they are able to effortlessly calculate intervals and perform time sensitive tasks with great accuracy. With the development of ever more precise clocks and techniques for measuring time we have become much better at representing and calculating time. Technology has had a significant impact on the way in which time dictates the rhythms of our lives. Scientific and cultural representations of time are more complex than ever before and this has made possible the intricate web of synchronized interactions that are characteristic of our times. But how does the mind represent time? How should one characterize our awareness of time, which is the origin of other, more complex representations of time? Until very recently, these questions needed to be answered only by intuitive insight and philosophical analysis. Theses about how the mind represents time were offered by philosophers, which I will assess in this dissertation. But no evidence in support of these theses was available. The psychology of time—particularly the study of how the mind estimates the duration of intervals and is acquainted with the present—has become a very important area of research in cognitive science. Experiments with animals that are very
Recommended publications
  • Genetic Control of Diurnal and Lunar Emergence Times Is Correlated in the Marine Midge Clunio Marinus Tobias S Kaiser1,2*, Dietrich Neumann3 and David G Heckel1
    Kaiser et al. BMC Genetics 2011, 12:49 http://www.biomedcentral.com/1471-2156/12/49 RESEARCHARTICLE Open Access Timing the tides: Genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus Tobias S Kaiser1,2*, Dietrich Neumann3 and David G Heckel1 Abstract Background: The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. Results: We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. Conclusions: The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks.
    [Show full text]
  • Chasing Sympatric Speciation
    C HASING SYMPATRIC SPECIATION - P rezygotic isolation barriers in barriers isolation rezygotic CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF Spodoptera SPODOPTERA FRUGIPERDA frugiperda frugiperda S ABINE H ÄNNIGER SABINE HÄNNIGER CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF SPODOPTERA FRUGIPERDA ‘Every scientific statement is provisional. […]. How can anyone trust scientists? If new evidence comes along, they change their minds.’ Terry Pratchett et al., The Science of Discworld: Judgement Day, 2005 S. Hänniger, 2015. Chasing sympatric speciation - The relative importance and genetic basis of prezygotic isolation barriers in diverging populations of Spodoptera frugiperda PhD thesis, University of Amsterdam, The Netherlands ISBN: 978 94 91407 21 5 Cover design: Sabine Hänniger Lay-out: Sabine Hänniger, with assistance of Jan Bruin CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF SPODOPTERA FRUGIPERDA ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 06 oktober 2015, te 10.00 uur door SABINE HÄNNIGER geboren te Heiligenstadt, Duitsland Promotores prof. dr. S.B.J. Menken 1 prof. dr. D.G. Heckel 2 Co-promotor dr. A.T. Groot 1,2 Overige leden prof. dr. A.M. de Roos 1 prof. dr. P.H. van Tienderen 1 prof. dr. P.C.
    [Show full text]
  • Genetic Basis of Allochronic Differentiation in the Fall Armyworm
    UvA-DARE (Digital Academic Repository) Genetic basis of allochronic differentiation in the fall armyworm Hänniger, S.; Dumas, P.; Schöfl, G.; Gebauer-Jung, S.; Vogel, H.; Unbehend, M.; Heckel, D.G.; Groot, A.T. DOI 10.1186/s12862-017-0911-5 Publication date 2017 Document Version Final published version Published in BMC Evolutionary Biology License CC BY Link to publication Citation for published version (APA): Hänniger, S., Dumas, P., Schöfl, G., Gebauer-Jung, S., Vogel, H., Unbehend, M., Heckel, D. G., & Groot, A. T. (2017). Genetic basis of allochronic differentiation in the fall armyworm. BMC Evolutionary Biology, 17, [68]. https://doi.org/10.1186/s12862-017-0911-5 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 Hänniger et al.
    [Show full text]
  • Polygenic Adaptation from Standing Genetic Variation Allows Rapid Ecotype Formation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440113; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Polygenic adaptation from standing genetic variation allows rapid ecotype formation Nico Fuhrmann, Celine Prakash, Tobias S. Kaiser* Max Planck Institute for Evolutionary Biology, Max Planck Research Group Biological Clocks, August-Thienemann-Strasse 2, 24306 Plön, Germany *[email protected] Abstract Adaptive ecotype formation is the first step to speciation, but the genetic underpinnings of this process are poorly understood. While in marine midges of the genus Clunio (Diptera) re- production generally follows a lunar rhythm, we here characterize two lunar-arrhythmic eco- types. Analysis of 168 genomes reveals a recent establishment of these ecotypes, reflected in massive haplotype sharing between ecotypes, irrespective of whether there is ongoing gene flow or geographic isolation. Genetic analysis and genome screens reveal patterns of poly- genic adaptation from standing genetic variation. Ecotype-associated loci prominently include circadian clock genes, as well as genes affecting sensory perception and nervous system de- velopment, hinting to a central role of these processes in lunar time-keeping. Our data show that adaptive ecotype formation can occur rapidly, with ongoing gene flow and largely based on a re-assortment of existing and potentially co-adapted alleles. Keywords: Local adaptation, reproductive timing, lunar rhythm, biological clocks, sympat- ric speciation, gene flow, Chironomidae, marine ecology 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440113; this version posted April 18, 2021.
    [Show full text]
  • Linkages Between Saline Lakes and Their Riparian Zone Over Climate Change
    1 Linkages between Saline Lakes and their Riparian zone over climate change Philip Sanders School of Biological and Chemical studies Queen Mary University of London Mile End Road, London, E1 4NS A Thesis submitted to the University of London for the Degree of Doctor of Philosophy November 2016 2 Statement of Originality I certify that this thesis and the research presented with it are the product of my own work. During the Fieldwork campaigns I had multiple assistance from Undergraduate and Msc students, members of the local community, and a combined field excursion with members of the University of Southampton. I acknowledge the input of the above when relevant. The guidance I received from my supervisors is acknowledged in a section dedicated to this purpose. Other authors work is cited and the references listed at the end of the thesis. All other opinions and views given are my own. 3 Abstract Research on resource transfer across ecosystem boundaries (i.e. allochthonous material; a subsidy) has been recognised since the 1920s and recognition of allochthonous inputs has been a part of food web theory since its inception. Nonetheless, only in recent decades have subsidies between ecosystems become a feature of large scale food web studies. Measures of subsidy links are usually restricted to studies on either marine or freshwater, the latter being the focus of most attention. In a recent meta-analysis of cross ecosystem boundary subsidies, two thirds of the 32 data sets used focused on freshwater ecosystems and one third on marine; none involved saline lakes. As a percentage of total global water volume saline lakes are almost equal to that of freshwater, yet there is a paucity of research carried out on linkage between saline lakes and their catchments.
    [Show full text]
  • Joel Moubayed-Breil1 & Jean-Marie Dominici2 1 Freshwater & Marine
    CHIRONOMUS Journal of Chironomidae Research No. 32, 2019: 4-24. Current Research. CLUNIO BOUDOURESQUEI SP. N. AND THALASSOSMITTIA BALLESTAI SP. N., TWO TYRRHENIAN MARINE SPECIES OCCURRING IN SCANDOLA NATURE RESERVE, WEST CORSICA (DIPTERA: CHIRONOMIDAE) Joel Moubayed-Breil1 & Jean-Marie Dominici2 1 Freshwater & Marine biology, 10 rue des Fenouils, F-34070 Montpellier, France. E-mail: [email protected], corresponding author 2Nature Reserve of Scandola (Regional Nature Park of Corsica), 20245 Galéria, Corsica, France. E-mail: [email protected] http://zoobank.org/4E98B6AF-1BFF-4C12-BCF0-C416B600CA94 Abstract on the taxonomic position, ecology and geographi- cal distribution of the new species are given. Clunio boudouresquei sp. n. and Thalassosmittia Introduction ballestai sp. n. are diagnosed and described based on associated material of male adults, pharate Recent investigations of marine chironomids con- male adults and pupal exuviae recently collected ducted in the protected area of Scandola Nature in the marine littoral zone of Scandola Nature Reserve (West Corsica), allowed us to sample Reserve (Cala Litizia, Punta Palazzu, Focolara fully developed pharate, adults, pupae and pupal Bay, West Corsica). While C. boudouresquei sp. exuviae of two new species, which belong to the n. is described as male and female adults and pu- genera Clunio Haliday, 1855 and Thalassosmittia pal exuviae, T. ballestai sp. n. is described only Strenzke & Remmert, 1957. The two new species as male adult and pupal exuviae. On the basis of (C. boudouresquei sp. n. and T. ballestai sp. n.) some atypical characters found in the male adult were previously reported by Moubayed-Breil et and pupal exuviae, both C.
    [Show full text]
  • An INIRO DUCTION
    Introduction to the Black Sea Ecology Item Type Book/Monograph/Conference Proceedings Authors Zaitsev, Yuvenaly Publisher Smil Edition and Publishing Agency ltd Download date 23/09/2021 11:08:56 Link to Item http://hdl.handle.net/1834/12945 Yuvenaiy ZAITSEV шшшшшшишшвивявшиншшшаттшшшштшшщ an INIRO DUCTION TO THE BLACK SEA ECOLOGY Production and publication of this book was supported by the UNDF-GEF Black Sea Ecosystem Recovery Project (BSERP) Istanbul, TURKEY an INTRO Yuvenaly ZAITSEV TO THE BLACK SEA ECOLOGY Smil Editing and Publishing Agency ltd Odessa 2008 УДК 504.42(262.5) 3177 ББК 26.221.8 (922.8) Yuvenaly Zaitsev. An Introduction to the Black Sea Ecology. Odessa: Smil Edition and Publishing Agency ltd. 2008. — 228 p. Translation from Russian by M. Gelmboldt. ISBN 978-966-8127-83-0 The Black Sea is an inland sea surrounded by land except for the narrow Strait of Bosporus connecting it to the Mediterranean. The huge catchment area of the Black Sea receives annually about 400 ктУ of fresh water from large European and Asian rivers (e.g. Danube, Dnieper, Yeshil Irmak). This, combined with the shallowness of Bosporus makes the Black Sea to a considerable degree a stagnant marine water body wherein the dissolved oxygen disappears at a depth of about 200 m while hydrogen sulphide is present at all greater depths. Since the 1970s, the Black Sea has been seriously damaged as a result of pollution and other man-made factors and was studied by dif­ ferent specialists. There are, of course, many excellent works dealing with individual aspects of the Black Sea biology and ecology.
    [Show full text]
  • RNA Secondary Structures in Dscam1 Mutually Exclusive Splicing: Unique Evolutionary Signature from the Midge
    Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press RNA secondary structures in Dscam1 mutually exclusive splicing: Unique evolutionary signature from the midge Weiling Hong, Yang Shi, Bingbing Xu, Yongfeng Jin* MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China * Correspondence should be addressed to Yongfeng Jin: 0086-571-88206479(Tel); 0086-571- 88206478(Fax); [email protected](e-mail). Article Type: Letter to editor Running Title: RNA secondary structures in midge Dscam splicing Key words: Alternative splicing; Dscam; base-pairing; evolution; midge; Weiling Hong 1 Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The Drosophila melanogaster gene Dscam1 potentially generates 38,016 distinct isoforms via mutually exclusive splicing, which are required for both nervous and immune functions. However, the mechanism underlying splicing regulation remains obscure. Here we show apparent evolutionary signatures characteristic of competing RNA secondary structures in exon clusters 6 and 9 of Dscam1 in the two midge species (Belgica antarctica and Clunio marinus). Surprisingly, midge Dscam1 encodes only ~6,000 different isoforms through mutually exclusive splicing. Strikingly, the docking site of the exon 6 cluster is conserved in almost all insects and crustaceans but is specific in the midge; however, the docking site-selector base- pairings are conserved. Moreover, the docking site is complementary to all predicted selector sequences downstream of every variable exon 9 of the midge Dscam1, which is in accordance with the broad spectrum of their isoform expression.
    [Show full text]
  • C H I R O N O M
    CHIRONOMUS MITTEILUNGEN AUS DER CHIRONOMIDENKUNDE 5th INTERNATIONAL SlniPosIu~ON CIIIRONOWIDAE ABISKO, SWEDISH-LAPLAND AUGUST 7-9, 1973 In accordance with the preliminary plan made during the 4th ~nternational Symposium or1 Chironomidae at Ottawa, Canada, on August '10-12, 1970, 1 have the pleasure of inviting you to the 5th Chironomid Symposium. The symposium will be held at the Natural Science Station of Abisko, Swedish- Lapland, on August 7-9, 1973. The station is well equipped with laboratory faci- lities, library (especially literature concerning physiography and biology of the Fennoscnndian mountain areas), sauna, bedrooms, dormitories, big kitchen, etc. Meals will be served within the institute, at least during the symposium. Thc Natural Science Station is situated in the subarctic birchforest zone, close to tile great lake Tornetrask and in the rleiglmbourhood of a railway station (680211 N). The surrounding area is influenced very little by man and offers ex- cellent opportunities for collecting in subarctic and arctic lakes, streams, and springs. The costs are calculated at about 25-35 Swedish crowns per day and person (20:- for meals, 15:- for doy~bleroom, 5:- for dormitory). After the symposium, participants staying to do field work will have an opportunity to do individual cooking. Abisko is reached by train, or by airplane via Stockholm to Kiruna (with connecting train to Abisko which takes about 2 hours). Please inform me by June 1, 1972 if you are planning to attend the symposium and if you intend to read a paper. In the coming fall I will then give you more information about the programme of the symposium.
    [Show full text]
  • Chironomidae ••
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. IX. Part 2. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS DIPTERA 2. NEMA TO CERA : families TIPULIDAE TO CHIRONOMlDAE CHIRONOMIDAE •• . 121 By R. L. COE PAUL FREEMAN P. F. MATTINGLY LONDON Published by the Society and Sold at its Rooms .p, Queen's Gate, S.W. 7 31st May, 1950 Price TwentY. Shillings CHIRONOMIDAE 121 Family CHIRONOMIDAE. By R. L. CoE. FLIES of the family CHIRONOMIDA.E may be distinguished from other Nematocerous families of Diptera by the following combination of charac­ ters : Ocelli absent ; antennae hairy (especially in d') ; six to eight veins reaching wing-margin; one or both anal veins not reaching margin; vein M simple; cross-veins R-M and M-CU (latter when present) near middle of wing. The reduced mouthparts and the fact that the costa is not con­ tinued around the entire wing provide simple distinctions from CuLICIDAE, to which family some groups bear a superficial resemblance. The closely­ related CERA.TOPOGONIDA.E (" biting midges ") were formerly included in the CHIRONOMIDA.E (" non-biting midges"), and differ most obviously by the forked vein M ; head rounded behind instead of flattened ; postnotum without a distinct median longitudinal furrow or keel, which is present in most CHIRONOMIDA.E .
    [Show full text]
  • Physiology and Systematics
    PHYSIOLOGY AND SYSTEMATICS New genes are not produced but it is the way they are organized and the different developmental pathways they become involved in that produces the effect we see in an individual group. “Interest in the links between development and evolution have been heightened recently by the discovery that developmentally interesting genes identified in one organism often have homologs (based on sequence similarity) in a range of distantly related creatures.” pg. 581 Patel SYSTEMATICS AS PHYSIOLOGY John Kennedy (famous insect behaviorist), in a chapter (see below) devoted to Sir V. B. Wigglesworth on his retirement) noted that behavior is the expression of an organism’s physiology J.S. Kennedy. 1967. Behaviour as physiology, pp. 249-266. In: Insects and Physiology. Eds. J.W.L. Beament and J.E. Treherne. Oliver & Boyd, London. The same should hold true for systematics. Morphological traits, biochemical traits, etc., are the results of the organism’s physiology as orchestrated by the genetic system of the organism. Thus, Systematics as physiology is an appropriate topic for a course in Insect Structure and Function. Think of it! Don’t most systematists use structure as a key to unlock the identity of a new species and to place it in its phylogenetic position. INTEGUMENTRY SYSTEM 1. Identification using cuticular hydrocarbons or lipids Neal, J.W., et al. 1994. Cuticular lipids of greenhouse whitefly and sweetpotato whitefly Type A and B (Homoptera: Aleyrodidae) pupal exuviae on the same host. Ann. Ent. Soc. Amer. 87:609-618. F. Raboudi, M. Mezghani, H. Makni, M. Marrakchi, J. D. Rouault, M.
    [Show full text]
  • Survey of Ige Reactivity to Nonbiting Midges in Korea and Identification of Ige-Binding Protein
    Allergy Asthma Immunol Res. 2019 Sep;11(5):644-654 https://doi.org/10.4168/aair.2019.11.5.644 pISSN 2092-7355·eISSN 2092-7363 Original Article Survey of IgE Reactivity to Nonbiting Midges in Korea and Identification of IgE-Binding Protein Myung-hee Yi ,1 Ju Yeong Kim ,1 Kyoung Yong Jeong ,2 Han-Il Ree,1 Tai-Soon Yong1* 1Department of Environmental Medical Biology, Arthropods of Medical Importance Resource Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea 2Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea Received: Dec 30, 2018 Revised: Apr 6, 2019 ABSTRACT Accepted: May 1, 2019 Purpose: Chironomids (nonbiting midges) are widely and abundantly distributed near Correspondence to ponds, rivers, and artificially dammed pools used for irrigation. Chironomids contain Tai-Soon Yong, MD, PhD allergens and cause airway allergy in humans. In this study, we aimed to examine the allergic Department of Environmental Medical Biology and Arthropods of Medical Importance potential of chironomids in inhabitants living near artificially dammed pools. Resource Bank, Institute of Tropical Medicine, Methods: We examined immunoglobulin E (IgE) reactivity to chironomid extracts in the Yonsei University College of Medicine, 50-1 sera of residents living around installed dams and assessed the correlations of IgE responses Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. between chironomids (Chironomus flaviplumus, Chironomus kiiensis, Cricotopus bicinctus) and Tel: +82-2-2228-1851 house dust mites (Dermatophagoides farinae). In addition, we identified potential IgE binding Fax: +82-2-363-8676 proteins specific for adultC. bicinctus, a popular species in Korea.
    [Show full text]