In Silico Analysis Predicting Effects of Deleterious Snps of Human
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole-Genome Sequencing for Tracing the Genetic Diversity of Brucella Abortus and Brucella Melitensis Isolated from Livestock in Egypt
pathogens Article Whole-Genome Sequencing for Tracing the Genetic Diversity of Brucella abortus and Brucella melitensis Isolated from Livestock in Egypt Aman Ullah Khan 1,2,3 , Falk Melzer 1, Ashraf E. Sayour 4, Waleed S. Shell 5, Jörg Linde 1, Mostafa Abdel-Glil 1,6 , Sherif A. G. E. El-Soally 7, Mandy C. Elschner 1, Hossam E. M. Sayour 8 , Eman Shawkat Ramadan 9, Shereen Aziz Mohamed 10, Ashraf Hendam 11 , Rania I. Ismail 4, Lubna F. Farahat 10, Uwe Roesler 2, Heinrich Neubauer 1 and Hosny El-Adawy 1,12,* 1 Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; AmanUllah.Khan@fli.de (A.U.K.); falk.melzer@fli.de (F.M.); Joerg.Linde@fli.de (J.L.); Mostafa.AbdelGlil@fli.de (M.A.-G.); mandy.elschner@fli.de (M.C.E.); Heinrich.neubauer@fli.de (H.N.) 2 Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany; [email protected] 3 Department of Pathobiology, University of Veterinary and Animal Sciences (Jhang Campus), Lahore 54000, Pakistan 4 Department of Brucellosis, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; [email protected] (A.E.S.); [email protected] (R.I.I.) 5 Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, Abbassia, Citation: Khan, A.U.; Melzer, F.; Cairo 11517, Egypt; [email protected] 6 Sayour, A.E.; Shell, W.S.; Linde, J.; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Elzera’a Square, Abdel-Glil, M.; El-Soally, S.A.G.E.; Zagazig 44519, Egypt 7 Veterinary Service Department, Armed Forces Logistics Authority, Egyptian Armed Forces, Nasr City, Elschner, M.C.; Sayour, H.E.M.; Cairo 11765, Egypt; [email protected] Ramadan, E.S.; et al. -
CERENKOV: Computational Elucidation of the Regulatory Noncoding Variome
CERENKOV: Computational Elucidation of the Regulatory Noncoding Variome Yao Yao∗ Zheng Liu∗ Satpreet Singh Oregon State University Oregon State University Oregon State University EECS EECS EECS [email protected] [email protected] [email protected] Qi Wei Stephen A. Ramsey Oregon State University Oregon State University EECS Department of Biomedical Sciences [email protected] Corvallis, Oregon 97330 [email protected] ABSTRACT (hAVGRANKi = 3.877). The source code for CERENKOV We describe a novel computational approach, CERENKOV is available on GitHub and the SNP feature data files are (Computational Elucidation of the REgulatory NonKOd- available for download via the CERENKOV website. ing Variome), for discriminating regulatory single nucleotide polymorphisms (rSNPs) from non-regulatory SNPs within CCS CONCEPTS noncoding genetic loci. CERENKOV is specifically designed • Computing methodologies → Machine learning; • for recognizing rSNPs in the context of a post-analysis of a Applied computing → Computational biology; Bioin- genome-wide association study (GWAS); it includes a novel formatics; accuracy scoring metric (which we call average rank, or AV- GRANK) and a novel cross-validation strategy (locus-based KEYWORDS sampling) that both correctly account for the \sparse positive SNP, GWAS, noncoding, rSNP, SNV, machine learning bag" nature of the GWAS post-analysis rSNP recognition problem. We trained and validated CERENKOV using a reference set of 15,331 SNPs (the OSU17 SNP set) whose composition is based -
Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases. -
COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone During SARS-Cov-2 Infection
pharmaceuticals Review COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection Katarzyna Kotfis 1,* , Kacper Lechowicz 1 , Sylwester Drozd˙ zal˙ 2 , Paulina Nied´zwiedzka-Rystwej 3 , Tomasz K. Wojdacz 4, Ewelina Grywalska 5 , Jowita Biernawska 6, Magda Wi´sniewska 7 and Miłosz Parczewski 8 1 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 2 Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; [email protected] 4 Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] 5 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 6 Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; [email protected] 7 Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 8 Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; [email protected] * Correspondence: katarzyna.kotfi[email protected]; Tel.: +48-91-466-11-44 Abstract: In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared Citation: Kotfis, K.; Lechowicz, K.; a global pandemic by the World Health Organization (WHO). The clinical course of the disease is Drozd˙ zal,˙ S.; Nied´zwiedzka-Rystwej, unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to P.; Wojdacz, T.K.; Grywalska, E.; acute respiratory distress syndrome (ARDS). -
Identification and Characterization of a Novel Human Testis-Specific
Biochemical and Biophysical Research Communications 285, 400–408 (2001) doi:10.1006/bbrc.2001.5165, available online at http://www.idealibrary.com on Identification and Characterization of a Novel Human Testis-Specific Kinase Substrate Gene Which Is Downregulated in Testicular Tumors Andreas Scorilas,*,† George M. Yousef,*,† Klaus Jung,‡ Ewa Rajpert-De Meyts,§ Stephan Carsten,‡ and Eleftherios P. Diamandis*,†,1 *Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; †Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada; ‡Department of Urology, University Hospital Charite, Humboldt University, Berlin, Germany; and §Department of Growth and Reproduction, Juliane Marie Centre, National University Hospital, Copenhagen, Denmark Received June 8, 2001 physiology, most probably in the process of spermato- By using the positional candidate gene approach, we genesis or spermiogenesis. © 2001 Academic Press identified a novel putative serine/threonine kinase Key Words: kinase substrates; testis-specific genes; substrate gene that maps to chromosome 19q13.3. gene mapping; gene characterization; TSKS; testis- Screening of expressed sequence tags and reverse specific kinase substrate; RRAS; IRF3; testicular transcription–polymerase chain reaction of total RNA cancer. from human tissues allowed us to establish the expres- sion of the gene and delineate its genomic organiza- tion (GenBank Accession No. AF200923). This gene (TSKS, for testis-specific kinase substrate) is com- Protein phosphorylation is the most common post- posed of 11 exons and 10 intervening introns and is translational protein modification in eukaryotes and a likely the human homolog of the mouse testis-specific fundamental mechanism for the direct or indirect con- serine kinase substrate gene. -
Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation -
Deciphering the Nature of Trp73 Isoforms in Mouse
cancers Article Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System Lorena López-Ferreras 1,2,†, Nicole Martínez-García 1,3,†, Laura Maeso-Alonso 1,2,‡, Marta Martín-López 1,4,‡, Ángela Díez-Matilla 1,‡ , Javier Villoch-Fernandez 1,2, Hugo Alonso-Olivares 1,2, Margarita M. Marques 3,5,* and Maria C. Marin 1,2,* 1 Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; [email protected] (L.L.-F.); [email protected] (N.M.-G.); [email protected] (L.M.-A.); [email protected] (M.M.-L.); [email protected] (Á.D.-M.); [email protected] (J.V.-F.); [email protected] (H.A.-O.) 2 Departamento de Biología Molecular, Universidad de León, 24071 León, Spain 3 Departamento de Producción Animal, Universidad de León, 24071 León, Spain 4 Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain 5 Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain * Correspondence: [email protected] (M.M.M.); [email protected] (M.C.M.); Tel.: +34-987-291757 Citation: López-Ferreras, L.; (M.M.M.); +34-987-291490 (M.C.M.) Martínez-García, N.; Maeso-Alonso, † Equal contribution. ‡ Equal contribution. L.; Martín-López, M.; Díez-Matilla, Á.; Villoch-Fernandez, J.; Simple Summary: The Trp73 gene is involved in the regulation of multiple biological processes Alonso-Olivares, H.; Marques, M.M.; Marin, M.C. Deciphering the Nature such as response to stress, differentiation and tissue architecture. -
Nck Adaptor Proteins Link Nephrin at the Podocyte Slit Diaphragm to the Hippo Regulator WTIP
Nck Adaptor Proteins Link Nephrin at the Podocyte Slit Diaphragm to the Hippo Regulator WTIP by Ava Keyvani Chahi A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Ava Keyvani Chahi, December, 2014 ABSTRACT NCK ADAPTOR PROTEINS LINK NEPHRIN AT THE PODOCYTE SLIT DIAPHRAGM TO THE HIPPO REGULATOR WTIP Ava Keyvani Chahi Advisor: University of Guelph, 2014 Dr. Nina Jones Podocytes are specialized epithelial cells that contribute to the kidney blood filtration barrier. Their unique cytoskeletal architecture and other complex biological signals are largely maintained by a modified adherens junction known as the slit diaphragm (SD). A major component of the SD is the transmembrane protein nephrin, which upon tyrosine phosphorylation of the intracellular domain regulates actin remodeling and cell survival. Nck adaptor proteins are a critical component of the filtration barrier and connect nephrin to actin-remodeling proteins by binding phosphotyrosine residues and proline-rich motifs. Herein we identify a novel Nck binding partner, Wilm’s tumor interacting protein (WTIP). WTIP is a transcription regulator in podocytes, though Nck is not nuclear localized under conditions known to induce WTIP nuclear accumulation. However, we demonstrate that WTIP is recruited to nephrin, upon nephrin tyrosine phosphorylation by Src Family Kinases, in an Nck-dependent manner. WTIP is an evolutionarily conserved negative regulator of the Hippo kinase pathway, which inhibits the transcription factor Yap. Yap activity promotes podocyte survival. We show in mice that cannot recruit Nck to nephrin, and by extension WTIP, that Yap protein levels are downregulated. -
1847.Full-Text.Pdf
Published OnlineFirst January 29, 2016; DOI: 10.1158/0008-5472.CAN-15-1752 Cancer Molecular and Cellular Pathobiology Research RASSF1A Directly Antagonizes RhoA Activity through the Assembly of a Smurf1-Mediated Destruction Complex to Suppress Tumorigenesis Min-Goo Lee, Seong-In Jeong, Kyung-Phil Ko, Soon-Ki Park, Byung-Kyu Ryu, Ick-Young Kim, Jeong-Kook Kim, and Sung-Gil Chi Abstract RASSF1A is a tumor suppressor implicated in many tumorigenic as Rhotekin. As predicted on this basis, RASSF1A competed with processes; however, the basis for its tumor suppressor functions are Rhotekin to bind RhoA and to block its activation. RASSF1A not fully understood. Here we show that RASSF1A is a novel mutants unable to bind RhoA or Smurf1 failed to suppress antagonist of protumorigenic RhoA activity. Direct interaction RhoA-induced tumor cell proliferation, drug resistance, epitheli- between the C-terminal amino acids (256–277) of RASSF1A and al–mesenchymal transition, migration, invasion, and metastasis. active GTP-RhoA was critical for this antagonism. In addition, Clinically, expression levels of RASSF1A and RhoA were inversely interaction between the N-terminal amino acids (69-82) of correlated in many types of primary and metastatic tumors and RASSF1A and the ubiquitin E3 ligase Smad ubiquitination regu- tumor cell lines. Collectively, our findings showed how RASSF1A latory factor 1 (Smurf1) disrupted GTPase activity by facilitating may suppress tumorigenesis by intrinsically inhibiting the tumor- Smurf1-mediated ubiquitination of GTP-RhoA. We noted that the promoting activity of RhoA, thereby illuminating the potential RhoA-binding domain of RASSF1A displayed high sequence mechanistic consequences of RASSF1A inactivation in many can- homology with Rho-binding motifs in other RhoA effectors, such cers. -
Epac2a-Null Mice Exhibit Obesity-Prone Nature More Susceptible to Leptin Resistance
OPEN International Journal of Obesity (2017) 41, 279–288 www.nature.com/ijo ORIGINAL ARTICLE Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance M Hwang1,5,YGo2,5,6, J-H Park1, S-K Shin1, SE Song1, B-C Oh3, S-S Im1, I Hwang1, YH Jeon2, I-K Lee2, S Seino4 and D-K Song1 BACKGROUND: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. METHODS: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. RESULTS: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. -
RAP2 Mediates Mechanoresponses of the Hippo Pathway Zhipeng Meng1, Yunjiang Qiu2,3, Kimberly C
LETTER https://doi.org/10.1038/s41586-018-0444-0 RAP2 mediates mechanoresponses of the Hippo pathway Zhipeng Meng1, Yunjiang Qiu2,3, Kimberly C. Lin1, Aditya Kumar4, Jesse K. Placone4, Cao Fang1, Kuei-Chun Wang4,5, Shicong Lu1, Margaret Pan1, Audrey W. Hong1, Toshiro Moroishi1,6,7, Min Luo1,8, Steven W. Plouffe1, Yarui Diao2, Zhen Ye2, Hyun Woo Park1,9, Xiaoqiong Wang10, Fa-Xing Yu11, Shu Chien4,5, Cun-Yu Wang12, Bing Ren2,13, Adam J. Engler4 & Kun-Liang Guan1* Mammalian cells are surrounded by neighbouring cells and Extended Data Fig. 1b). Expression of the YAP and TAZ target extracellular matrix (ECM), which provide cells with structural genes CTGF, CYR61, and ANKRD1 was repressed by low stiffness in support and mechanical cues that influence diverse biological wild-type cells, but not in RAP2-KO cells (Fig. 1f). Similar results were processes1. The Hippo pathway effectors YAP (also known as YAP1) observed in human mesenchymal stem cells (Extended Data Fig. 1c–e), and TAZ (also known as WWTR1) are regulated by mechanical in which RAP2 deletion suppressed differentiation into adipocytes cues and mediate cellular responses to ECM stiffness2,3. Here we (Extended Data Fig. 1f, g). In luminal breast cancer MCF7 cells, identified the Ras-related GTPase RAP2 as a key intracellular ECM stiffness modulated localization of YAP and TAZ in a RAP2- signal transducer that relays ECM rigidity signals to control dependent manner, whereas the basal type MDA-MB-468 cells showed mechanosensitive cellular activities through YAP and TAZ. constitutively cytoplasmic localization of YAP and TAZ regardless RAP2 is activated by low ECM stiffness, and deletion of RAP2 of stiffness (Extended Data Fig. -
SHOC2–MRAS–PP1 Complex Positively Regulates RAF Activity and Contributes to Noonan Syndrome Pathogenesis
SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis Lucy C. Younga,1, Nicole Hartiga,2, Isabel Boned del Ríoa, Sibel Saria, Benjamin Ringham-Terrya, Joshua R. Wainwrighta, Greg G. Jonesa, Frank McCormickb,3, and Pablo Rodriguez-Vicianaa,3 aUniversity College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom; and bHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158 Contributed by Frank McCormick, September 18, 2018 (sent for review November 22, 2017; reviewed by Deborah K. Morrison and Marc Therrien) Dephosphorylation of the inhibitory “S259” site on RAF kinases CRAF/RAF1 mutations are also frequently found in NS and (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. cluster around the S259 14-3-3 binding site, enhancing CRAF ac- The MRAS GTPase, a close relative of RAS oncoproteins, interacts tivity through disruption of 14-3-3 binding (8) and highlighting the with SHOC2 and protein phosphatase 1 (PP1) to form a heterotri- key role of this regulatory step in RAF–ERK pathway activation. meric holoenzyme that dephosphorylates this S259 RAF site. MRAS is a very close relative of the classical RAS oncoproteins MRAS and SHOC2 function as PP1 regulatory subunits providing (H-, N-, and KRAS, hereafter referred to collectively as “RAS”) the complex with striking specificity against RAF. MRAS also func- and shares most regulatory and effector interactions as well as tions as a targeting subunit as membrane localization is required transforming ability (9–11). However, MRAS also has specific for efficient RAF dephosphorylation and ERK pathway regulation functions of its own, and uniquely among RAS family GTPases, it in cells.