2019 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

2019 Annual Report ANNUAL REPORT 2019 MANAGEMENT The Buffalo Pound Water Treatment Plant management staff may TEAM Plant is located approximately be reached by e-mail at the thirty kilometres northeast of the following addresses: City of Moose Jaw, Saskatchewan, Ryan Johnson on Highway No. 301, seventeen General Manager kilometres north of the [email protected] intersection with Highway No. 1. Blair Kardash The Plant’s mailing address is Laboratory and Research Manager PO Box 944, Moose Jaw, [email protected] Saskatchewan, S6H 2V2. Keith Guillaume The telephone number is Operations and Safety Manager 306-694-1377. [email protected] Information about the Buffalo Harry Gahra Pound Water Treatment Plant is also Maintenance and Engineering available from the Plant’s website. Manager This may be accessed by going to: [email protected] http://www.buffalopoundwtp.ca Laurie Wilkinson Office and Board Support Manager [email protected] BUFFALO POUND WATER 2 ANNUAL REPORT 2019 2019 ANNUAL REPORT BUFFALO POUND WATER 3 ANNUAL REPORT 2019 TABLE OF CONTENTS INTRODUCTION 5 BOARD CHAIRPERSON’S LETTER 6 GENERAL MANAGER’S LETTER 7 MANDATE, MISSION, GOALS AND VALUES 9 STRATEGIC PLAN 10 THE YEAR IN REVIEW RESOURCES 12 PLANT OPERATIONS AND MAINTENANCE 16 CAPITAL PLAN 20 PLANT SAFETY 24 RISK REVIEW 25 KPIs 27 REGULATORY AND GOVERNMENTAL AFFAIRS 30 HUMAN RESOURCES 31 RESEARCH 34 BUDGET 37 APPENDICES APPENDIX 1 WATER QUALITY ANALYTICAL DATA - 2019 41 APPENDIX 2 AUDITED FINANCIAL STATEMENTS - 2019 54 BUFFALO POUND WATER 4 ANNUAL REPORT 2019 INTRODUCTION ABOUT THIS BUFFALO POUND WATER REPORT BOARD OF DIRECTORS This report summarizes the The Buffalo Pound Water Board activities and major events of the of Directors (the “Board”) was Buffalo Pound Water Treatment created in 2016 by the Unanimous Corporation (the “Corporation”) for Membership Agreement (UMA), the operations of the Buffalo Pound which replaced the previous Buffalo Water Treatment Plant (the “Plant”) Pound Water Administration during 2019. The report outlines the Board from 1951. The UMA is Mission and Goals, achievements an Agreement between the Cities and areas of interest. It is intended of Regina and Moose Jaw (the as an information source for City “Owners”) and the Corporation. In administration personnel, elected accordance with the Agreement, officials and the general public. This the skill based Board is comprised report also contains the Drinking of six independent members. Water Quality and Compliance Report required by provincial regulations and the Audited Financial Statements. DALE SCHOFFER, DARYL BEN BOARD CHAIR POSEHN BOOTS JUDY DAVE GRANT MAY RICHARDS RING BUFFALO POUND WATER 5 ANNUAL REPORT 2019 On behalf of the Board, I am In addition to electrical upgrades, pleased to present the 2019 Annual efforts continue to address the aging Report of the Buffalo Pound Water 65-year-old Plant facilities. In 2019, Treatment Corporation (BPWTC). work continued on the development of the Plant Renewal Project, which The BPWTC’s mission recognizes will augment or replace the existing that it provides a critical service for water treatment processes and the residents of Regina, Moose Jaw physical Plant. The estimated cost and surrounding Region. Its future ranges from $127 to $224 million, is driven by the vision of continued which has not yet been financed. high quality water that always meets The Plant Renewal Projects will the demands of our customers ensure a reliable supply of potable in a reliable and cost-effective water long into the future. The Board manner. This vision underpins the plans to award the design portion BPWTC strategic plan with a focus of the project in early 2020. on capital investment, staffing, processes, financial stability, risk In September, the Board of management and governance. Directors adopted a Diversity Policy to formalize procedures BPWTC completed Phase 1 of that ensure diversity at the the $45 million Electrical Capital board table is maintained and Upgrade Project with a significant BOARD CHAIRPERSON’S increased going forward. capital investment in its electrical supply infrastructure. Phases 2 and The continued success of BPWTC is LETTER 3 commenced during the year and entirely due to the hard working and will both be completed in 2020. This dedicated staff of the organization, will address the most significant under the leadership of General DALE SCHOFFER risks in the production and reliability Manager Ryan Johnson and his FCPA,FCA, C.DIR of the water supplied to the Cities. management team. I would like to This project was made possible by a thank each and every one of them for $20.6 million grant from the federal their commitment and enthusiasm. and provincial governments under the Provincial-Territory Infrastructure Component of the New Building Dale Schoffer, FCPA, FCA, C.Dir Canada Fund program. Once this project is completed, backup power generation capabilities will mitigate the consequences of power outages. BUFFALO POUND WATER 6 ANNUAL REPORT 2019 The Plant met all regulatory will enable the Corporations to requirements and criteria for the execute the maintenance process production of safe drinking water. in a consistent manner, reduce As well, the Corporation met its equipment related risks and optimize obligations under the Unanimous the capital planning process. Membership Agreement and Phase 1 of the Electrical mandate established by the Cities. Capital Upgrade Project was There were minimal problems during completed which included a the year impacting the Corporation’s new electrical substation and operations. The issues were related backup generators at the Main to loss of power, raw water quality Plant. This work has mitigated a and equipment failure. There significant risk to the Corporation’s remains some regulatory issues ability to meet its mandate. with the operations of the Plant’s Phases 2 and 3 of the electrical process waste lagoons discharging upgrade project, which includes back into the environment. Short the Transmission Line and Lake term adjustments are being made Pump Station Renewal, commenced to processes and procedures to construction in 2019 and will both be improve the operation. However, the completed in 2020. These projects Plant Renewal Project will properly will improve the electrical system address these deficiencies. GENERAL MANAGER’S reliability and efficiency, optimize The Draft Water Access and raw water pumping operation, LETTER Supply Agreements were provided replace the electrical substation and to the Cities in December. add backup generators to ensure the reliability of future water supply. The The raw water quality continues RYAN JOHNSON Province and Federal Government to improve with increased water CD, M.A.SC., P.ENG. committed $20.6 million in grant flows from Lake Diefenbaker funds under the Provincial-Territorial and releases from Buffalo Pound Infrastructure Component (PTIC) On behalf of the Buffalo Pound Water Lake. The continued improvement of the New Building Canada Fund Treatment Corporation’s Management in raw water quality resulted in in 2018 for Phases 2 and 3 of the Team and Staff, I am very pleased a reduction in chemical costs Electrical Capital Upgrade Project. to present the 2019 Annual Report. for three consecutive years. The Plant Renewal Project (PRP) 2019 was a very good year for The Corporation’s Safety will ensure the long-term viability operations at the Buffalo Pound Management System Certificate of the Buffalo Pound Water Water Treatment Plant. The Plant of Recognition continues to be Treatment Plant. The PRP will provided safe drinking water to certified by the Safety Association address the increasing challenges over 260,000 people in Moose Jaw, of Saskatchewan Manufacturers to treat the lake water. The PRP is Regina and surrounding Region. at the Bronze Level. The Safety essential to ensure the Plant can Management System continues meet current and future regulatory to contribute to the strengthening requirements. By addressing aging of our safety culture core value. infrastructure issues the PRP will Consistent with our core values, the fulfill the Corporation’s mandate Corporation is striving to become for generations to come. The PRP a process-driven organization. The progressed on schedule in 2019. Plant substantially completed the In April, 2019, the Corporation implementation of the Computerized submitted an “Expression of Interest” Maintenance Management System under the Investing in Canada (CMMS) to strengthen maintenance Infrastructure Program – Green practices and better retain Infrastructure Stream. This is the institutional knowledge. The system first stage of the application process BUFFALO POUND WATER 7 ANNUAL REPORT 2019 by which the Corporation seeks to and dedication to ensure that the secure up to $215.4 million in federal Corporation met its regulatory and provincial government funding. requirements, mandate and objectives throughout the year. The Corporation received $9.3 million for capital work in 2019 Finally, I would also like to express from water sales, PTIC grant my gratitude to the Board of proceeds and interest earned. The Directors for their continued Corporation spent $19.6 million insight and input they provide to during the year. The amount of ensure the Corporation is able to approved funding carried forward meet its mandate and mission. to complete projects already in progress was $33.3 million. Ryan Johnson, CD, M.A.Sc., P.Eng. Water sales were strong, especially in the first half of 2019. Revenues were $13.3 million and expenses were $11.6 million, which resulted in a surplus of approximately $1.7 million at year end. The surplus was added to the Corporation’s reserve funds. I want to thank the Buffalo Pound Water Management Team and Staff for their collective hard work BUFFALO POUND WATER 8 ANNUAL REPORT 2019 MANDATE, MISSION, GOALS AND VALUES MANDATE The Corporation will reliably and efficiently provide safe, high quality and affordable drinking water to the Cities. MISSION To provide a reliable and affordable supply of safe, high- quality drinking water which meet the needs and expectations of consumers for the Cities of Regina and Moose Jaw.
Recommended publications
  • Prepared For
    Application Submitted to the NEB Appendix 6 106°0'0"W 104°0'0"W 102°0'0"W 28 28 Imperial 27 27 Springside UV369 27 Govan 27 Roblin Davidson 26 Yorkton 44 26 UV5 26UV November 2014 ¯ 26 UV15 52 UV 16A 31 30 UV 02 25 32 Ituna 06 05 04 03 12 25 09 08 07 FIGURE 3 11 SHEET 2 OF 2 25 29 28 27 26 25 24 23 22 21 25 19 18 17 16 15 14 13 Last 381 24 UV 83 WATER CROSSINGS SK-WC44 Mountain Strasbourg 24 UV SASKATCHEWAN 24 Lake Saltcoats 24 L Craik 51°0'0"N o 23 ENBRIDGE PIPELINES INC. Craik 20 o UV n 310 23 LINE 3 REPLACEMENT PROGRAM C UV 51°0'0"N 220 r Melville Bredenbury 80 !. UV 23 Southey ee Cupar UV 23 k A 10427 !( SK-WC46 22 s SKP 600 s i 22 Langenburg n Churchbridge i Water Crossing 22 b 322 22 10 o UV UV 21 16 i Russell SK-WC47 UV n !. Station Kilometre Post Fort Balcarres 45 21 e 354 UV UV R 21 A Regina 21 Qu'appelle !( r 210 i Existing Pump Station m UV v Ri Beach Lemberg 20 e ve r r 20 UV22 K ") Existing Terminal Station 20 Bethune apo 20 sv 56 Esterhazy a Line 3 Replacement Pipeline Route 11 Lumsden UV 19 r UV42 UV 19 C SASKATCHEWAN re Existing Line 3 Pipeline 19 !( 19 364 e 19A k UV Qu MANITOBA Indian Ap19A UV247 SK-WC52 pe 892 Highway Qu'appelle ll 18 UV 18 Head e River 18 SK-WC48 Pilot 18 1 Road T SK-WC53 Butte Balgonie UV Sintaluta hu Moose SK-WC49 8 n Regina 17 UV Railway d UV41 17 er !.
    [Show full text]
  • RELOCATION GUIDE 5 Tourism Moose Jaw, Courtesy of Pam Lusk Courtesy Pam of Jaw, Moose Tourism Courtesy of Andy Hamilton ECONOMY Photo by Ron Garnett / Airscapes.Ca
    NOTORIOUSLY WELCOMING WELCOME TO MOOSE JAW Moose Jaw rated Number 3 in a list of 10 of Canada's Coolest Downtowns – Expedia.ca Canada's Most Notorious City What makes us Notorious? Our name – absolutely. Our Mac the Moose – definitely. For many, it’s our legendary underground past. It’s notoriously imperfect, and it’s helped shape who we are. But to Moose Javians, we’re so much more. Notoriously charming. Notoriously generous. Notoriously entrepreneurial. Notoriously entertaining. Courtesy of Tourism Saskatchewan Courtesy Tourism of We are unafraid to celebrate our past and roar into the CONTENTS Small Town Feel, Big City Amenities 4 A Friendly City with a Spotlight on Local Food Culture 26 Twenties towards a notoriously Economy 6 Notoriously Rich History 16 Proud of our Cultural Diversity 29 prosperous future. So join us for Employment Opportunities 6 Special Feature: A Fun Day in Education Services 31 a day, a week, or a lifetime in a Moose Jaw 18 Make a Notorious Move 8 Special Feature: More Fun to place that is absolutely, positively City of Moose Jaw Map 19 A Great Place to Call Home 10 be Had in Moose Jaw 34 Canada's Most Notorious City. A Great Place to Play 21 Moose Jaw Festivals & Events 12 Relocation Resource Listings 36 Welcome to Moose Jaw! Moose Jaw Plays a Major Role in Local & Provincial Day Excursions 14 Provincial Equine Events 22 Cover photo credits: Tourism Moose Jaw, courtesy of Megan Keller, Melissa Pierce, Nick Pollett. Moose Jaw Tunnels courtesy of Tourism Saskatchewan. SMALL TOWN FEEL BIG CITY AMENITIES Moose Jaw ranks #2 in the Top 20 small cities in Canada to live in! – www.citiesjournal.com Moose Jaw is a progressive, modern city committed to Moose Jaw is a significant tourist enhancing the lives of all who live and work here.
    [Show full text]
  • Lake Diefenbaker: the Prairie Jewel
    Journal of Great Lakes Research 41 Supplement 2 (2015) 1–7 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Lake Diefenbaker: The prairie jewel Introduction with intakes that are 34 m below FSL. The proportion of inflowing water that flows out of Gardiner Dam varies from ~70% in low flow years (e.g., 2001 average flow was 84 m3 s−1)toover97%inhigh fl 3 −1 Fighting drought with a dam: Lake Diefenbaker, the reservoir of ow years (e.g., 2005; 374 m s ; Hudson and Vandergucht, 2015) fl life-giving water.CBC's Norman DePoe. with a median proportional out ow of ~94%. Additional water losses in- clude net evaporation, which can represent over 10% in dry years, irriga- On the broad expanse of flat land of the northern Great Plains of tion, and direct use from the reservoir. From the Qu'Appelle Dam, Lake Canada lies a large, narrow, river-valley reservoir, Lake Diefenbaker. Diefenbaker water is transferred out of the natural catchment and re- The reservoir was developed for multiple benefits including the irriga- leased down the Qu'Appelle River to supply southern regions of the tion of ~2000 km2 of land in Central Saskatchewan, the generation of province. With a mean depth of 22 m, the water residence time, though hydroelectricity, a source of drinking water, flood control, water for in- variable, is typically just over a year (Donald et al., 2015; Hudson and dustry and livestock, and recreation. This semi-arid region has an aver- Vandergucht, 2015).
    [Show full text]
  • State of Lake Diefenbaker Report
    State of Lake Diefenbaker Prepared for: Consultation Meeting on May 30, 2012. Document was edited and revised on October 19, 2012 Executive Summary The purpose of this report is to provide the stakeholders with some context of the South Saskatchewan River project, the management issues associated with the operation of the Gardiner and Qu’Appelle River Dams, and the health of Lake Diefenbaker and the Lake Diefenbaker Watershed. This report summarizes the management activities associated with the operation of the South Saskatchewan River Project and the potential outcomes related to these management activities. Information within this report provides a basis for evaluating the management objectives and setting priorities for the operation of the Project. Table 1 outlines the various reservoir management activities and the resulting consequences of these activities. The South Saskatchewan River Project, of which Lake Diefenbaker and the Gardiner and Qu’Appelle River Dams are the primary components, is a critical water resource for the province of Saskatchewan. The South Saskatchewan River Project is currently owned and managed by the Water Security Agency of Saskatchewan for multiple services, including irrigation, municipal and industrial water supply, hydroelectric power generation, recreation, aquatic and wildlife habitat, and downstream flood control. The services provided by the Project are fundamental to the province’s economic, social and environmental well being. Lake Diefenbaker construction started after an agreement between the province of Saskatchewan and the Government of Canada, which was signed in 1958. The initial purpose of the project was to form a reservoir that could provide source water to irrigate approximately 200,000 hectares of farmland in central Saskatchewan and the Qu’Appelle Valley.
    [Show full text]
  • Moose Jaw Public Library, Archives Department Finding
    Moose Jaw Public Library, Archives Department Finding Aid - MJ General Photograph Collection (MJPL-GPL) Generated by Access to Memory (AtoM) 2.5.3 Printed: April 29, 2020 Language of description: English Moose Jaw Public Library, Archives Department 461 Langdon Crescent Moose Jaw Saskatchewan Canada S6H 0X6 Telephone: (306) 692-2787 Fax: (306) 692-3368 Email: [email protected] http://www.moosejawlibrary.ca http://sain.scaa.sk.ca/collections//index.php/mjpl-general-photograph-collection MJ General Photograph Collection Table of contents Summary information ...................................................................................................................................... 3 Scope and content ........................................................................................................................................... 3 Access points ................................................................................................................................................... 3 Series descriptions ........................................................................................................................................... 3 - Page 2 - MJPL-GPL MJ General Photograph Collection Summary information Repository: Moose Jaw Public Library, Archives Department Title: MJ General Photograph Collection ID: MJPL-GPL Date: 1890-2000? (date of creation) Physical description: 490 photographs : b&w and col. Dates of creation, revision and deletion: Scope and content This collection contains photos of
    [Show full text]
  • Water and Industry, Presentation Prepared by Chief Todd Peigan
    PRESENTATION: November 1, 2019 WATER & INDUSTRY WATER Contrary to the position of the Provincial and Federal Governments that the water flow thru the Qu’Appelle Valley is NATURAL. This position is untrue as Governments have constructed water control structures throughout the Qu’Appelle Valley since 1897. These water control structures store and release waters throughout the Qu’Appelle Valley WATER Before we understand the dynamics on how the Qu’Appelle Valley Water Way is managed, we must first look at all the man-made water control structures. WATER Diefenbaker Lake WATER Diefenbaker Lake . Lake Diefenbaker is the largest body of water in southern Saskatchewan. It was formed by two dams, the Qu’Appelle River Dam and Gardiner Dam. 9,400,000 cubic dam Full Supply Level (FSL) or 7.6 million acre ft. storage. The Qu’Appelle Dam controls flows in the Qu’Appelle River and the Gardiner Dam controls flows in the South Saskatchewan River. WATER Diefenbaker Lake . The dams were officially opened June 21, 1967. Lake Diefenbaker provides domestic water for approximately 45 percent of Saskatchewan people. Water is also stored for use by 10 potash mines, 4 major irrigation projects, various industries and wildlife interests. The lake also plays an important role in power generation and flood control. WATER Qu’Appelle Dam Outlet to Buffalo Pound WATER Buffalo Pound Lake Map WATER Buffalo Pound Lake and Spill-way . Buffalo Pound Dam is located 100 km southeast of Lake Diefenbaker, and approximately 30 km northeast of Moose Jaw. 91,279 cubic dam FSL . This reservoir is the first major lake on the Qu'Appelle River below the Qu'Appelle River Dam.
    [Show full text]
  • A Thesis Submitted to the College Of
    Biological and physicochemical mechanisms affecting phosphorus and arsenic efflux from prairie reservoir sediment, Buffalo Pound Lake, SK, Canada. A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree Masters of Science in the Toxicology Graduate Program University of Saskatchewan Saskatoon, Saskatchewan, Canada Submitted by: Lawrence Peter D’Silva © Copyright Lawrence Peter D’Silva, January 2017. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Program or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Chair of the Toxicology Graduate Program Toxicology Centre University of Saskatchewan 44 Campus Drive Saskatoon, Saskatchewan, Canada, S7N 5B3 i ABSTRACT Eutrophication and algal blooms pose environmental and economical issues in freshwater lakes globally.
    [Show full text]
  • Differential Stimulation and Suppression of Phytoplankton Growth by Ammonium Enrichment in Eutrophic Hardwater Lakes Over 16 Years
    Limnol. Oceanogr. 00, 2018, 1–20 © 2018 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11093 Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years Vanessa J. Swarbrick ,1,a Gavin L. Simpson ,2 Patricia M. Glibert ,3 Peter R. Leavitt 1,2,4* 1Limnology Laboratory, Department of Biology, University of Regina, Regina, Saskatchewan, Canada 2Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan, Canada 3Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 4Institute of Global Food Security, Queen’s University Belfast, Belfast, United Kingdom Abstract Previous research suggests that fertilization of surface waters with chemically reduced nitrogen (N), including + ammonium (NH4 ), may either enhance or suppress phytoplankton growth. To identify the factors influencing the + net effect of NH4 , we fertilized natural phytoplankton assemblages from two eutrophic hardwater lakes with growth- – – saturating concentrations of NH4Cl in 241 incubation experiments conducted biweekly May August during 1996 2011. Phytoplankton biomass (as chlorophyll a)wassignificantly (p < 0.05) altered in fertilized trials relative to con- trols after 72 h in 44.8% of experiments, with a marked rise in both spring suppression and summer stimulation of assemblages over 16 yr, as revealed by generalized additive models (GAMs). Binomial GAMs were used to compare contemporaneous changes in physico-chemical (temperature,Secchidepth,pH,nutrients; 19.5% deviance explained) and biological parameters (phytoplankton community composition; 40.0% deviance explained) to results from fertili- + zation experiments.
    [Show full text]
  • PRESENTATION: February 22 & 23 - 2012
    PRESENTATION: February 22 & 23 - 2012 WATER INDUSTRY WATER Contrary to the position of the Provincial and Federal Governments that the water flows thru the Qu’Appelle Valley are: NATURAL. This position is untrue as Governments have constructed water control structures throughout the Qu’Appelle Valley since 1897. These water control structures store and release waters throughout the Qu’Appelle Valley WATER Before we understand the dynamics on how the Qu’Appelle Valley Water Ways is managed, we must first look at all the water control structures. We must also look at the man-made water bodies throughout the Qu’Appelle System. WATER Diefenbaker Lake WATER Diefenbaker Lake Lake Diefenbaker is the largest body of water in southern Saskatchewan. It was formed by two dams, the Qu’Appelle River Dam and Gardiner Dam. 9,400,000 cubic dam Full Supply Level (FSL) or 7.6 million acre ft. storage. The Qu’Appelle Dam controls flows in the Qu’Appelle River and the Gardiner Dam controls flows in the South Saskatchewan River. WATER Diefenbaker Lake The dams were officially opened June 21, 1967. Lake Diefenbaker provides domestic water for approximately 45 percent of Saskatchewan people. Water is also stored for use by 10 potash mines, 4 major irrigation projects, various industries and wildlife interests. The lake also plays an important role in power generation and flood control. WATER Qu’Appelle Dam Outlet to Buffalo Pound WATER Buffalo Pound Lake and Spill-way WATER Buffalo Pound Lake and Spill-way Buffalo Pound Dam is located 100 km southeast of Lake Diefenbaker, and approximately 30 km northeast of Moose Jaw.
    [Show full text]
  • Unexpected Shift from Phytoplankton to Periphyton in Eutrophic Streams Due to Wastewater Influx
    Limnol. Oceanogr. 9999, 2021, 1–17 © 2021 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11786 Unexpected shift from phytoplankton to periphyton in eutrophic streams due to wastewater influx Nathanael T. Bergbusch ,1,2 Nicole M. Hayes ,1,2,a Gavin L. Simpson ,2 Peter R. Leavitt 1,2,3* 1Limnology Laboratory, Department of Biology, University of Regina, Regina, Saskatchewan, Canada 2Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan, Canada 3Institute for Global Food Security, Queen’s University Belfast, Belfast, UK Abstract Pollution with nitrogen (N) and phosphorous (P) impairs streams by favoring suspended algae and cyano- bacteria over diatom-rich periphyton. Recently, wastewater treatment plants have been upgraded to biological + fl nutrient removal to eliminate both P and N (mainly NH4 ), although little is known of the effects of this ef uent on flowing waters. Here, we used high performance liquid chromatography to quantify how the abundance and composition of phytoplankton and periphyton varied in response to both influx of effluent produced by biologi- cal nutrient removal and physico-chemical conditions in small, turbid, P-rich streams of the northern Great Plains. At the catchment scale, analysis with generalized additive models (GAMs) explained 40.5–62.6% of devi- ance in total phototroph abundance (as Chl a) and 72.5–82.5% of deviance in community composition (as biomarker carotenoids) in both planktonic and benthic habitats when date- and site-specific physico-chemical parameters were used as predictors. In contrast, GAMs using wastewater input (as aqueous δ15N) as a predictor explained up to 50% of deviance in Chl a, and ~60% of deviance in community composition, in both suspended (51.6% of Chl a, 67.1% of composition) and attached communities (21.5% of Chl a, 58.8% of composition).
    [Show full text]
  • WATER QUALITY MODELLING of BUFFALO POUND LAKE by Julie
    WATER QUALITY MODELLING OF BUFFALO POUND LAKE by Julie Terry A thesis submitted to the College of Graduate and Postdoctoral Studies University of Saskatchewan in partial fulfilment of the requirements for the degree of Doctor of Philosophy in The School of Environment and Sustainability March 2020 Copyright © Julie Terry, March, 2020. All Rights Reserved PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Executive Director School of Environment and Sustainability University of Saskatchewan Room 323, Kirk Hall 117 Science Place Saskatoon, SK S7N 5C8, Canada Or Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan S7N 5C9 Canada i ABSTRACT The highly variable climate of the Canadian Prairies causes high economic losses from floods and droughts.
    [Show full text]
  • Saskatchewan Leader's Guide
    Saskatchewan Leader’s Guide What can YOU do to improve your watershed? We want to hear your realistic solution to a local environmental concern. You can make it happen. We can help. This workbook belongs to: Name:______________________________________ www.saskriverbasin.ca Club:_______________________________________ www.CaringForOurWatersheds.com Date:_______________________________________ Table of Contents Page What is a watershed? 1 Overview 2 Benefits of Caring For Our Watersheds 2 Tasks and Deliverables 3 Learning Objectives 3 Contest 4 Teacher or Leader Time Committment 4 Saskatchewan’s Major River Basins Map 5 Saskatchewan Map 6 Answer Keys Assiniboine River Watershed Answer Key 7 Carrot River Watershed Answer Key 9 Lower Qu’Appelle Watershed Answer Key 11 Lower Souris Watershed Answer Key 13 Moose Jaw River Watershed Answer Key 15 North Saskatchewan River Watersed Answer Key 17 Old Wives Lake Watershed Answer Key 19 South Saskatchewan River Watershed Answer Key 21 Swift Current Creek Watershed Answer Key 23 Upper Qu’Appelle and Wascana Watershed Answer Key 25 Upper Souris River Watershed Answer Key 27 Project Examples 29 Need More Inspiration? 29 Project Activities 31 Assessment Tool 44 Glossary of Terms 45 Additional Resources 47 What is a watershed? A watershed or drainage basin is a region that drains a particular body of water, such as a river, pond, lake or ocean. The area of land encompassed could be tiny or it could be immense. The size of a watershed, and the speed and direction of the flow of its rivers, is determined by land forms. High ground, such as mountain ranges and hills, form the boundaries between watersheds, and to a large degree they also direct the path and speed of rivers.
    [Show full text]