Ubiquitination Is Essential for Recovery of Cellular Activities Following Heat Shock Authors: Brian A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells. -
Sanjay Kumar Gupta
The human CCHC-type Zinc Finger Nucleic Acid Binding Protein (CNBP) binds to the G-rich elements in target mRNA coding sequences and promotes translation Das humane CCHC-Typ-Zinkfinger-Nukleinsäure-Binde-Protein (CNBP) bindet an G-reiche Elemente in der kodierenden Sequenz seiner Ziel-mRNAs und fördert deren Translation Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität WürzBurg, Section: Biomedicine suBmitted By Sanjay Kumar Gupta from Varanasi, India WürzBurg, 2016 1 Submitted on: …………………………………………………………..…….. Office stamp Members of the Promotionskomitee: Chairperson: Prof. Dr. Alexander Buchberger Primary Supervisor: Dr. Stefan Juranek Supervisor (Second): Prof. Dr. Utz Fischer Supervisor (Third): Dr. Markus Landthaler Date of Public Defence: …………………………………………….………… Date of Receipt of Certificates: ………………………………………………. 2 Summary The genetic information encoded with in the genes are transcribed and translated to give rise to the functional proteins, which are building block of a cell. At first, it was thought that the regulation of gene expression particularly occurs at the level of transcription By various transcription factors. Recent discoveries have shown the vital role of gene regulation at the level of RNA also known as post-transcriptional gene regulation (PTGR). Apart from non-coding RNAs e.g. micro RNAs, various RNA Binding proteins (RBPs) play essential role in PTGR. RBPs have been implicated in different stages of mRNA life cycle ranging from splicing, processing, transport, localization and decay. In last 20 years studies have shown the presence of hundreds of RBPs across eukaryotic systems many of which are widely conserved. Given the rising numBer of RBPs and their link to human diseases it is quite evident that RBPs have major role in cellular processes and their regulation. -
Localization of Condensin Subunit XCAP-E in Interphase Nucleus, Nucleoid and Nuclear
1 Localization of condensin subunit XCAP-E in interphase nucleus, nucleoid and nuclear matrix of XL2 cells. Elmira Timirbulatova, Igor Kireev, Vladimir Ju. Polyakov, and Rustem Uzbekov* Division of Electron Microscopy, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia. *Author for correspondence: telephone. 007-095-939-55-28; FAX 007-095-939-31-81 e-mail: [email protected] Key words: XCAP-E; nucleolus; condensin; nuclear matrix; Xenopus. Abbreviations: DAPI , 4’, 6 diamidino-2-phenylindole; DNP, deoxyribonucleoprotein; DRB, 5,6-dichloro-1b-d-ribofuranosylbenzimidazole; SMC, structural maintenance of chromosomes; XCAP-E, Xenopus chromosome associated protein E. 2 Abstract The Xenopus XCAP-E protein is a component of condensin complex In the present work we investigate its localization in interphase XL2 cells and nucleoids. We shown, that XCAP-E is localizes in granular and in dense fibrillar component of nucleolus and also in small karyoplasmic structures (termed “SMC bodies”). Extraction by 2M NaCl does not influence XCAP-E distribution in nucleolus and “SMC bodies”. DNAse I treatment of interphase cells permeabilized by Triton X-100 or nucleoids resulted in partial decrease of labeling intensity in the nucleus, whereas RNAse A treatment resulted in practically complete loss of labeling of nucleolus and “SMC bodies” labeling. In mitotic cells, however, 2M NaCl extraction results in an intense staining of the chromosome region although the labeling was visible along the whole length of sister chromatids, with a stronger staining in centromore region. The data are discussed in view of a hypothesis about participation of XCAP-E in processing of ribosomal RNA. -
Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S
Supplemental Material can be found at: http://www.mcponline.org/cgi/content/full/M600399-MCP200 /DC1 Research Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S Eugen Damoc‡, Christopher S. Fraser§, Min Zhou¶, Hortense Videler¶, Greg L. Mayeurʈ, John W. B. Hersheyʈ, Jennifer A. Doudna§, Carol V. Robinson¶**, and Julie A. Leary‡ ‡‡ Protein synthesis in mammalian cells requires initiation The initiation phase of eukaryotic protein synthesis involves factor eIF3, an ϳ800-kDa protein complex that plays a formation of an 80 S ribosomal complex containing the initi- Downloaded from central role in binding of initiator methionyl-tRNA and ator methionyl-tRNAi bound to the initiation codon in the mRNA to the 40 S ribosomal subunit to form the 48 S mRNA. This is a multistep process promoted by proteins initiation complex. The eIF3 complex also prevents pre- called eukaryotic initiation factors (eIFs).1 Currently at least 12 mature association of the 40 and 60 S ribosomal subunits eIFs, composed of at least 29 distinct subunits, have been and interacts with other initiation factors involved in start identified (1). Mammalian eIF3, the largest initiation factor, is a codon selection. The molecular mechanisms by which multisubunit complex with an apparent molecular mass of www.mcponline.org eIF3 exerts these functions are poorly understood. Since ϳ800 kDa. This protein complex plays an essential role in its initial characterization in the 1970s, the exact size, translation by binding directly to the 40 S ribosomal subunit composition, and post-translational modifications of and promoting formation of the 43 S preinitiation complex ⅐ ⅐ mammalian eIF3 have not been rigorously determined. -
Huntington's Disease Mice and Human Brain Tissue Exhibit Increased
Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization Isabella I. Sanchez, … , Robert C. Spitale, Leslie M. Thompson J Clin Invest. 2021. https://doi.org/10.1172/JCI140723. Research In-Press Preview Neuroscience Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington’s disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of HD patients and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex of HD patients. Of these targets, SG components were enriched, including the SG nucleating Ras GTPase-activating protein- binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of HD patient brains. Intriguingly, we also observed that the SG-associated TAR DNA-Binding Protein-43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1-granule positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD. Find the latest version: https://jci.me/140723/pdf 140723-JCI-RG-RV-3 Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization Isabella I. -
Untying the Knot: Protein Quality Control in Inherited Cardiomyopathies
Pflügers Archiv - European Journal of Physiology https://doi.org/10.1007/s00424-018-2194-0 INVITED REVIEW Untying the knot: protein quality control in inherited cardiomyopathies Larissa M. Dorsch1 & Maike Schuldt1 & Dora Knežević1 & Marit Wiersma1 & Diederik W. D. Kuster1 & Jolanda van der Velden1 & Bianca J. J. M. Brundel1 Received: 30 July 2018 /Accepted: 6 August 2018 # The Author(s) 2018 Abstract Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensa- tory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications. Keywords Cardiomyopathy .Proteinqualitycontrol .Sarcomericmutation .Heatshockproteins .Ubiquitin-proteasomesystem . Autophagy Classification of cardiomyopathies occurring asymmetrically, and dilated CM (DCM), in which the presence of LV dilatation is accompanied by contractile Cardiomyopathies (CM) constitute one of the most common dysfunction [24]. -
The Ire1a-XBP1 Pathway Promotes T Helper Cell Differentiation by Resolving Secretory Stress and Accelerating Proliferation
bioRxiv preprint doi: https://doi.org/10.1101/235010; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation Jhuma Pramanik1, Xi Chen1, Gozde Kar1,2, Tomás Gomes1, Johan Henriksson1, Zhichao Miao1,2, Kedar Natarajan1, Andrew N. J. McKenzie3, Bidesh Mahata1,2*, Sarah A. Teichmann1,2,4* 1. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom 2. EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom 3. MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 OQH, United Kingdom 4. Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom. *To whom correspondence should be addressed: [email protected] and [email protected] Keywords: Th2 lymphocyte, XBP1, Genome wide XBP1 occupancy, Th2 lymphocyte proliferation, ChIP-seq, RNA-seq, Th2 transcriptome Summary The IRE1a-XBP1 pathway, a conserved adaptive mediator of the unfolded protein response, is indispensable for the development of secretory cells. It maintains endoplasmic reticulum homeostasis by facilitating protein folding and enhancing secretory capacity of the cells. Its role in immune cells is emerging. It is involved in dendritic cell, plasma cell and eosinophil development and differentiation. Using genome-wide approaches, integrating ChIPmentation and mRNA-sequencing data, we have elucidated the regulatory circuitry governed by the IRE1a-XBP1 pathway in type-2 T helper cells (Th2). -
Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. -
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. -
SND1, a Component of RNA-Induced Silencing Complex, Is Up-Regulated in Human Colon Cancers and Implicated in Early Stage Colon Carcinogenesis
Research Article SND1, a Component of RNA-Induced Silencing Complex, Is Up-regulated in Human Colon Cancers and Implicated in Early Stage Colon Carcinogenesis Naoto Tsuchiya, Masako Ochiai, Katsuhiko Nakashima, Tsuneyuki Ubagai, Takashi Sugimura, and Hitoshi Nakagama Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan Abstract transcription factors is well known to be a causative event involved Colon cancers have been shown to develop after accumulation in malignant transformation, for example, with functional inacti- vation or intragenic mutation of p53 (3), and gene amplification or of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establish- overexpression of c-myc (4). ment of widely diverse phenotypes. Transcriptional and Recently, posttranscriptional regulation, especially translational posttranscriptional regulation of gene expression by small control, of gene expression has become a major interest in the field of cancer research, because accumulating evidence strongly RNA species, such as the small interfering RNA and microRNA suggests its biological relevance for cancer development and and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. progression (5). Some oncogenes and tumor suppressor genes, including c-myc (6), Mdm-2(7), and p53 (8), have been shown to be SND1, also called Tudor-SN and p100 and recently reported to regulated at the translational level. Overexpression of the transla- be a component of RISC, is among the list of highly expressed tion initiation factor eIF4E promotes malignant transformation of genes in human colon cancers. In the present study, we normal fibroblasts (9) and cooperates with c-Myc to drive B-cell showed remarkable up-regulation of SND1 mRNA in human lymphomatogenesis in eIF4E transgenic mice (10). -
Hexosamine Biosynthetic Pathway-Derived O-Glcnacylation Is Critical for RANKL-Mediated Osteoclast Differentiation
International Journal of Molecular Sciences Article Hexosamine Biosynthetic Pathway-Derived O-GlcNAcylation Is Critical for RANKL-Mediated Osteoclast Differentiation Myoung Jun Kim 1,†, Hyuk Soon Kim 2,3,† , Sangyong Lee 1, Keun Young Min 1, Wahn Soo Choi 1,4 and Jueng Soo You 1,4,* 1 School of Medicine, Konkuk University, Seoul 05029, Korea; [email protected] (M.J.K.); [email protected] (S.L.); [email protected] (K.Y.M.); [email protected] (W.S.C.) 2 Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Korea; [email protected] 3 Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea 4 KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Chungju 27478, Korea * Correspondence: [email protected]; Tel.: +82-2-2049-6235 † The first two authors are equally contributed. Abstract: O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc trans- ferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular dif- ferentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutri- ent metabolism, HBP was critical for this process. We observed that the critical genes related to HBP Citation: Kim, M.J.; Kim, H.S.; activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was Lee, S.; Min, K.Y.; Choi, W.S.; You, J.S. -
Monoclonal Antibody to SMC2 / CAPE - Purified
OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AM05324PU-N Monoclonal Antibody to SMC2 / CAPE - Purified Alternate names: CAP-E, Chromosome-associated protein E, SMC protein 2, SMC-2, SMC2L1, Structural maintenance of chromosomes protein 2, XCAP-E homolog Quantity: 0.1 mg Concentration: 1.0 mg/ml Background: CAP-E and CAP-C (Chromosome Associated Protein-E & C) are also SMC (Structural Maintenance of Chromosome) family members that form a heterodimeric complex required for mitotic chromosome condensation to achieve proper segregation of genetic information during subsequent cell division. hCAP-C/hCAP-E is a component of a multiprotein complex called condensin that interacts with phosphorylation of Histone H3 resulting in the mitotic chromosome condensation. The distribution patterns of the two heterodimeric complexes in interphase nucleus indicate independent behaviour of the two complexes during cell cycle. These results suggest that the two distinct complexes are involved in different aspects of mitotic chromosome organization in human cells. Uniprot ID: O95347 NCBI: NP_001036015.1 GeneID: 10592 Host / Isotype: Mouse / IgG Clone: E1M Immunogen: Hybridoma produced by the fusion of splenocytes from mice immunized with recombinant protein corresponding to amino acids 523-768 of Human CAP-E and Mouse myeloma cells. Genename: SMC2 Format: State: Liquid purified IgG fraction. Buffer System: PBS containing 0.08% Sodium Azide as preservative. Applications: Western Blot: 1-5 µg/ml.