Strychnos Spinosa Loganiaceae Lam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Temporal and Spatial Origin of Gesneriaceae in the New World Inferred from Plastid DNA Sequences
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 61–79. With 3 figures Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences MATHIEU PERRET1*, ALAIN CHAUTEMS1, ANDRÉA ONOFRE DE ARAUJO2 and NICOLAS SALAMIN3,4 1Conservatoire et Jardin botaniques de la Ville de Genève, Ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, Santo André, Brazil 3Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 4Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland Received 15 December 2011; revised 3 July 2012; accepted for publication 18 August 2012 Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Value Addition of Southern African Monkey Orange (Strychnos Spp.): Composition, Utilization and Quality Ruth Tambudzai Ngadze
Value addition of Southern African monkey orange ( Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze 2018 Ruth Tambudzai Ngadze Propositions 1. Food nutrition security can be improved by making use of indigenous fruits that are presently wasted, such as monkey orange. (this thesis) 2. Bioaccessibility of micronutrients in maize-based staple foods increases by complementation with Strychnos cocculoides. (this thesis) 3. The conclusion from Baker and Oswald (2010) that social media improve connections, neglects the fact that it concomitantly promotes solitude. (Journal of Social and Personal Relationships 27:7, 873–889) 4. Sustainable agriculture in developed countries can be achieved by mimicking third world small-holder agrarian systems. 5. Like first time parenting, there is no real set of instructions to prepare for the PhD journey. 6. Undertaking a sandwich PhD is like participating in a survival reality show. Propositions belonging to the thesis, entitled: Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth T. Ngadze Wageningen, October 10, 2018 Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze i Thesis committee Promotor Prof. Dr V. Fogliano Professor of Food Quality and Design Wageningen University & Research Co-promotors Dr A. R. Linnemann Assistant professor, Food Quality and Design Wageningen University & Research Dr R. Verkerk Associate professor, Food Quality and Design Wageningen University & Research Other members Prof. M. Arlorio, Università degli Studi del Piemonte Orientale A. Avogadro, Italy Dr A. Melse-Boonstra, Wageningen University & Research Prof. -
Some Phytotherapeutic Claims by Tribals of Rayagada District, Orissa, India
Ethnobotanical Leaflets 10: 189-197. 2006. Some Phytotherapeutic Claims by Tribals of Rayagada District, Orissa, India Chiranjibi Pattanaik*, Ch. Sudhakar Reddy, N. K. Dhal¹ and Rashmita Das² *Forestry and Ecology Division, National Remote Sensing Agency Hyderabad, Andhra Pradesh, India ¹Natural Products Division, Regional Research Laboratory, CSIR, Bhubaneswar, Orissa, India ²Department of Botany, Berhampur University, Berhampur, Orissa, India *Corresponding author Email: [email protected] Issued 11 August 2006 Abstract The present paper reports with 30 plant species belonging to 23 families, mostly used by the tribal people of Rayagada district, Orissa. The tribal population of the region primarily depends upon these plants for curing various diseases. They are enumerated with binomial, family, habit, local name, parts used and ethnomedicinal uses. Further studies on chemical and pharmacological actions are suggested to validate the claims. Key Words: Phytotherapeutic claim, Ethnomedicine, Tribes, Herbal healer, Orissa. Introduction Use of plant based drugs and chemicals for curing various ailments and personal adornment is as old as human civilization. In India, the sacred Vedas dating back between 3500 B.C and 800 B.C give many references of medicinal plants. One of the remotest works in traditional herbal medicine is “Virikshayurveda”, compiled even before the beginning of Christian era and formed the basis of medicinal studies in ancient India. “Rig Veda”, one of the oldest Indian literatures written around 2000 B.C. mentions the use of Cinnamon (Cinnamomum verum Prel.), Ginger (Zingiber officinale Rose.), Sandalwood (Santalum album L.) etc. not only in religious ceremonies but also in medical preparation (Bentley and Trimen, 1980). Plants and plant-based medicaments are the basis of many of the modern pharmaceuticals we used today for our various ailments (Abraham, 1981; Atal & Kapur, 1982). -
Morphological Study of Loganiaceae Diversities in West Africa
Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.10, 2013 Morphological Study of Loganiaceae Diversities in West Africa Olusola Thomas Oduoye 1*, Oluwatoyin T. Ogundipe 2. and James D. Olowokudejo 2. 1National Centre for Genetic Resources and Biotechnology (NACGRAB), PMB 5382, Moor plantation, Apata, Ibadan. 2Molecular Systematic Laboratory, Department of Botany, Faculty of Science, University of Lagos, Nigeria. *E-mail: [email protected] The authors want to sincerely acknowledge: i. The conservator general, officials and rangers of National Parks and Foresters in all Forests visited. ii. The NCF / Chevron – Chief S. L. Edu. (2011) award for this work. iii. STEPB – IOT, Research and Technology Development Grant, 2011. Abstract Loganiaceae belongs to the Order Gentianales which consists of the families Apocynaceae, Gelsemiaceae, Loganiaceae, Gentianaceae and Rubiaceae. Several Herbaria samples were studied prior to collection from Forest Reserves and National Parks in Nigeria, Republic of Benin and Ghana – with the aid of collection bags, cutlass, secateurs and ropes. Plants parts, both vegetative and reproductive were assessed with the aid of meter rule and tape rule in their natural environment and in the laboratory. Strychnos species collected were 47 individuals; 35 species were adequately identified. Anthocleista genus consists of nine species, Mostuea - three species while Nuxia, Spigelia and Usteria were monotypic genera. The leaf surfaces within the family are: hirsute, pilose, pubescent, tomentose and glabrous as found in Mostuea hirsuta, Strychnos phaeotricha, Strychnos innocua, Strychnos spinosa and members of Anthocleista species respectively. Morphological characters show 10 clusters at threshold of 47 % similarity. -
Strychnos Innocua Loganiaceae Del
Strychnos innocua Del. Loganiaceae LOCAL NAMES Amharic (inguachia,merenz); Bemba (mulungikome,mulungi); English (monkey orange,dull-leaved strychnos,wild orange,dull-leaved mukwakwa); Lozi (muzimbikolo); Lunda (mukunkampombo); Nyanja (kabulukulu,kambeli,kamwelalumba,mteme,mtulutulu); Swahili (mkwakwa,mgulungungulu,mtonga); Tigrigna (unguaka,unguak-hebay); Tongan (muteme,kalungi,mutu) BOTANIC DESCRIPTION Strychnos innocua is a small, straight-stemmed tree 3-14 m in high, with a smooth, green or yellowish-white, powdery bark; branchlets stout and smooth. Leaves simple, alternate, leathery, subsessile or shortly petiolate, obovate, elliptic or oblong-elliptic, 4-15 x 2-9 cm, coriaceous; rounded- emarginate or subacute at the apex; widely to very narrowly cuneate or rarely rounded at the base; glabrous to pubescent beneath; venation finely reticulate on both surfaces with 3-7 nerves arising from the leaf base that are prominent beneath; petiole 2-6 mm long. Flowers greenish-white or yellowish, up to 8 mm long, produced in axillary cymes; stalks short, 2-5 mm long; calyx lobes short and broad. Fruits globose, 6-10 cm in diameter, with a hard rind, glabrous, bluish- green when young, yellowish or orange when ripe, with a thick woody shell, containing many seeds embedded in a yellowish pulp. Seeds yellowish-white, tetrahedral, stony hard, 1.5-1.8 cm in diameter. ‘Strychnos’, meaning ‘deadly’, is an ancient Greek name for a certain poisonous member of the Solanaceae family. Linnaeus, who founded the genus Strychnos on the Indian species S. nux-vomica, which yields strychnine, possibly associated the deadly qualities of both groups when he named the genus. The specific epithet means harmless (lacking poisonous properties, spines etc). -
Monkey Orange Strychnos Cocculoides
Monkey orange Strychnos cocculoides Author: Charles K. Mwamba Editors: J. T. Williams (chief editor) R. W. Smith N. Haq Z. Dunsiger First published in 2006 by: Southampton Centre for Underutilised Crops, University of Southampton, Southampton, SO17 1BJ, UK © 2006 Southampton Centre for Underutilised Crops Printed at RPM Print and Design, West Sussex, UK The text in this document may be reproduced free of charge in any format or media without requiring specific permission. This is subject to the materials not being used in a derogatory manner or in a misleading context. The source of the material must be acknowledged as [SCUC] copyright and the title of the document must be included when being reproduced as part of another publication or service. Copies of this handbook, as well as an accompanying manual and factsheet, can be obtained by writing to the address below: International Centre for Underutilized Crops @ International Water Management Institute 127 Sunil Mawatha, Pelawatte, Battaramulla, Sri Lanka British Library Catalogue in Publication Data Monkey orange 1. tropical fruit trees i Williams ii Smith iii Haq iv Dunsiger ISBN 0854328416 Citation: C. Mwamba (2005) Monkey orange. Strychnos cocculoides. Southampton Centre for Underutilised Crops, Southampton, UK. THE FRUITS FOR THE FUTURE PROJECT This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID [R7187 Forestry Research Programme]. The opinions expressed in this book are those of the authors alone and do not imply an acceptance or obligation whatsoever on the part of ICUC, ICRAF or IPGRI. -
A New Formal Classification of Gesneriaceae Is Proposed
Selbyana 31(2): 68–94. 2013. ANEW FORMAL CLASSIFICATION OF GESNERIACEAE ANTON WEBER* Department of Structural and Functional Botany, Faculty of Biodiversity, University of Vienna, A-1030 Vienna, Austria. Email: [email protected] JOHN L. CLARK Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA. MICHAEL MO¨ LLER Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, U.K. ABSTRACT. A new formal classification of Gesneriaceae is proposed. It is the first detailed and overall classification of the family that is essentially based on molecular phylogenetic studies. Three subfamilies are recognized: Sanangoideae (monospecific with Sanango racemosum), Gesnerioideae and Didymocarpoideae. As to recent molecular data, Sanango/Sanangoideae (New World) is sister to Gesnerioideae + Didymocarpoideae. Its inclusion in the Gesneriaceae amends the traditional concept of the family and makes the family distinctly older. Subfam. Gesnerioideae (New World, if not stated otherwise with the tribes) is subdivided into five tribes: Titanotricheae (monospecific, East Asia), Napeantheae (monogeneric), Beslerieae (with two subtribes: Besleriinae and Anetanthinae), Coronanthereae (with three subtribes: Coronantherinae, Mitrariinae and Negriinae; southern hemisphere), and Gesnerieae [with five subtribes: Gesneriinae, Gloxiniinae, Columneinae (5the traditional Episcieae), Sphaerorrhizinae (5the traditional Sphaerorhizeae, monogeneric), and Ligeriinae (5the traditional Sinningieae)]. In the Didymocarpoideae (almost exclusively -
Chapter One 1.0 Introduction and Background to The
CHAPTER ONE 1.0 INTRODUCTION AND BACKGROUND TO THE STUDY Loganiaceae is a family of flowering plants classified in the Order Gentianales (Bendre, 1975). The family was first suggested by Robert Brown in 1814 and validly published by von Martius in 1827 (Nicholas and Baijnath, 1994). Members habits are in form of trees, shrubs, woody climbers and herbs. Some are epiphytes while some members are furnished with spines or tendrils (Bendre, 1975). They are distributed mainly in the tropics, subtropics and a few in temperate regions (Backlund et al., 2000). Earlier treatments of the family have included up to 30 genera, 600 species (Leeuwenberg and Leenhouts, 1980; Mabberley, 1997) but were later reduced to 400 species in 15 genera, with some species extending into temperate Australia and North America (Struwe et al., 1994; Dunlop, 1996; Backlund and Bremer, 1998). Morphological studies have demonstrated that this broadly defined Loganiaceae was a polyphyletic assemblage and numerous genera have been removed from it to other families (sometimes to other Orders), e.g. Gentianaceae, Gelsemiaceae, Plocospermataceae, Tetrachondraceae, Buddlejaceae, and Gesneriaceae (Backlund and Bremer, 1998; Backlund et al., 2000). The family has undergone numerous revisions that have expanded and contracted its circumscription, ranging from one genus at its smallest (Takhtajan, 1997; Smith et al., 1997) to 30 at its largest (Leeuwenberg and Leenhouts, 1980). One of the current infrafamilial classifications contains four tribes: Antonieae Endl., Loganieae Endl., Spigelieae Dum. (monotypic), and Strychneae Dum. (Struwe et al., 1994). The tribes Loganieae and Antonieae are supported by molecular data, but Strychneae is not (Backlund et al., 2000). -
An Investigation of Environmental Knowledge Among Two Rural Black Communities in Natal
AN INVESTIGATION OF ENVIRONMENTAL KNOWLEDGE AMONG TWO RURAL BLACK COMMUNITIES IN NATAL Submitted in partial fulfIlment of the requirements for the Degree of MASTER OF EDUCATION of Rhodes University by CYNTHIA SIBONGISENI MTSHALI February 1994 . , I i ABSTRACT This study elicits and documents knowledge of the natural environment amongst two rural Black communities in Natal namely, the districts of Maphumulo and Ingwavuma.Twenty members of these communities who are older than 60 years of age were interviewed, as older people are considered by the researcher to be important repositories of environmental knowledge. This study records a variety of animals hunted in these communities and discusses various activities associated with this activity. It examines the gathering and the use of wild edible plants like fruits and spinach, and of wild plants alleged to have medicinal value. It reviews indigenous knowledge related to 1 custom beliefs and prohibitions as well as traditional laws associated .with animals an9 trees. It also considers how this knowledge can contribute towards the development of Environmental Education in South Africa. The data was deduced from the responses elicited from semi-structured interviews. The data was analyzed qualitatively. ii TABLE OF CONTENTS Abstract Table of Contents ii List of Figures and Tables vi Acknowledgements vii ,-- - CHAPTER 1 1.1 Introduction 1 1.2 The Purpose and Background to the Study 1 1.3 The Statement of the Problem 3 1.4 Clarification of Concepts 4 1.4.1 Indigenous knowledge 4 1.4.2 Sustainable -
SABONET Report No 18
ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.