Regressional Episodes and Diversity Patterns of Australi~N Devonian Tabulate Corals

Total Page:16

File Type:pdf, Size:1020Kb

Regressional Episodes and Diversity Patterns of Australi~N Devonian Tabulate Corals Records of the Western Australian Museum Supplement No. 58: 273-277 (2000). Regressional episodes and diversity patterns of Australi~n Devonian tabulate corals Gary M. Dargan Department of Mineral Resources, Geological Survey of New South Wales, p.a. Box 76 Lidcombe NSW Australia 2141 Abstract - Biostratigraphic distribution of Australian Devonian tabulate corals appears to be influenced by episodes of transgression and regression both locally and world wide. Decreases in species diversity can be related to local regressive phases. Examination of contemporaneous sequences unaffected by regression is needed before a strong cause and effect relationship can be established. OCCURRENCES OF TABULATES IN from the record. The Garra 2 and Martins Well AUSTRALIA transgressions during the pesavis-sulcatus interval The major occurrences of tabulate coral-bearing saw tabulate numbers at their maximum of 55 units in the Early and Middle Devonian of Australia species, 47% of which were new. Extinctions were (Figure 1) are confined to eastern Australia at least low with only 5% of species making their last until the later part of the Givetian. appearance. This high net increase reflects the Few poorly documented tabulates occur in widespread nature of these transgressive events in Frasnian sequences in Eastern Australia. Better southeast Australia (Talent 1989). documented, are the late Givetian and Frasnian Much of the contribution to this diversity comes tabulates in the Canning Basin of Western from the favositids. The loss of nearly 53% of Australia. By the Famennian, cyanobacterial reefs tabulate species at the close of the Pragian appears replaced stromatoporoid-coral reefs; this is to be associated with a regressive interlude. This is, especially noticeable in the Canning Basin. however, possibly accentuated by an artefact of the literature. Apart from early work by Jones (1937, 1941 and 1944) the only substantial published work on Early Devonian favositids is that of Philip (1960) TRANSGRESSION CYCLES AND DIVERSITY which focuses on Pragian (latest sulcatus to pireneae) Talent (1989) and Talent et al. (1993) produced a favositids from Victoria. The progressive increase transgression-regression curve for eastern in species diversity until well into the Emsian Australia, portion of which is reproduced in Figure within most of the other tabulate families present 2. Discussions herein regarding changes in tabulate supports the idea of a literature-based artefact. diversity through the Early and Middle Devonian Further support for this comes from the rugose are made in relation to Talent's curve. corals which show increasing generic diversity from Earliest Lochkovian (hesperius Zone) tabulate the Pragian to the Emsian (Zhen et al. 1997). This faunas are low in diversity, with ten of the eleven pattern is also consistent with a general increase in species present being Silurian holdovers. This low the proliferation of tabulate, stromatoporoid and diversity is possibly related to the Derringullen rugosan buildups beginning in the Emsian and Creek/Bowning Regression associated with the peaking in the Givetian and Frasnian (Talent 1988a). Bowning Orogeny affecting southern New South The increase in diversity during the Emsian Wales. With the onset of the Garra 1 and Garra 2 coincides with further widespread transgressive transgressive cycles (Figure 2 from Talent 1989 and phases in eastern Australia. These include the Talent et al. 1993) preserved in the Garra Limestone Buchan Caves Limestone and basal Taravale near Wellington in central New South Wales and the transgressions in eastern Victoria and the Lockup Martins Well transgressive cycle in the Broken River Well Transgression in the Broken River area of area of north Queensland, conditions more north Queensland (Figure 2). The Buchan Caves favourable for limestone formation returned. This Limestone Transgression beginning at the base of resulted in an increase in tabulate species diversity. the Emsian saw a recovery in species numbers with Beginning with the Garra 1 Transgression spanning 22% being new species. Similar increases occurred the eurekaensis-delta zones 53% of the tabulate species during the Basal Taravale Transgression across the were new with 26% of existing species disappearing latest dehiscens and perbonus-gronbergi intervals 274 G.M. Dargan Distribution of Early and Middle Devonian Rocks in Eastern Australia (exclusive of intrusives) with references to tabulate coral faunas. undifferentiated"-.... ~ Cl' ) Chillagoe 0 to ~ t> I, I Broken River area (Nicho/son &Etheridge 1879; -1," Hill et al. 1967; Hill & Jell 1970b; .. , Pickett and Jell 1974) o Charters Towers 't a.tJ - Ukalunda fJ!P (Jell & Hill 1969) Cl Douglas Creek --~ Clermont ~ (Jones 1941; Jell & Hill 1970b) 0.. 0 Rockhampton Craven Peak <> Alpha 0 Gladstone Bedsl (non marine) , o Nogoa I, Anticline L -- -----l ~~"" ;~~~ , I ..,(';';'1 Tim~ury Hills I \,' ) I'~) BaSin , \ . \ (subsurface) \.", '\-'\ ~~~7 I '<.',' ;;..-_ ............. ,'-. 7/1-- .~ J~.. ~- Wellington (Hill and Jones 1940; Jones & Hill " Bogan Gate-Trundle 1940; Jones 1941; Hill 19S0, Strusz (Dargan 1993; Fo/dvary 2000) 1961; Hill & Jell 1970b) .------+- Moore Creek (Etheridge 1899,1920; Hill 19S0; Briih/ & Pohler 1999) '<oJ"--}--- Pigna Barney (Donga/199S) ___---.-L.-__ Mt Frome (Wright & F/orey 1979) )'--.:~F=:::::::-- Windellama (Mawson 1973) Yass (Jones 1937; Jones & Hill 1940; Pickett & Jell 1974) , Heathcote The Gramp,ians '~ Yea --""-- Buchan (Hill 19S0; Phllip 1960; Hill & Jell 1970b) , Melbout1\e c......,,~~-.:.--- Tyers (Philip 1960, 1962) "'-<-~'---------- Lilydale (Gill 1942; Philip 1960, 1962; Hill & Jell 1970b) 1.- Waratah Bay (Hill 19S4b) ~ i Zeehan -'----~ N (Gill 1948. 19S0) Point Hibbs -----., o (Jell & Hill 1970a) I Figure 1 Distribution of Early and Middle Devonian rocks in eastern Australia (exclusive of intrusives) with references to tabulate coral faunas (after Mawson and Talent 2000). Diversity patterns in Australian Devonian tabulates 275 ConodontZones Australian T· R Pattern Extinction Events nomsl VVV ... -...-... Papillio - Mytton regression (approx) disparilis - c ·· ? local T-R effects III hermanni - · -- ~ ,· .2: · - Stringocephalid C) W varcus - · ..J ,· 0 ,· 0 hemiansatus · - c "ensens;s" · Z == · .!l! kockelianus · et ~ ,· - Late Eifelian w australis · (Kaeak) - costatus VVV ....... · Mt Frome regression (local) Z Dartl us , oatulus 0 VVV Hatchery Creek and regression (local) -- serotinus C > III ~ Lockup Well transgression 'jj) inversus-Iaticostatus --...... Mid Emsian w E Upper Taravale (post - Murrindal) ...... - w perbonus-gronbergi (Daleje) 0 transpression dehiscens j Basa Taravale transgression ...... ~ Direneae Buchan Caves Limestone transgression 0:: Cl kindlei ..III 1~ Red Hill regression in ll. sulcatus -- - end pesavis pesavis Garra 2 transgression ...... :> delta -=? 0 .;.: , ...... ..... Rise .c · Garra 1 transgression eurekaensis · ~ lJ ......' Fall 0 · ..J woschmidti Darringullen Creek I Bowning regression VVv Tectonics VVV "'--" -- Figure 2 Transgression-regression pattern and major extinction events occurring in the Early and Middle Devonian in eastern Australia plotted against conodont zones for the interval (after Talent 1989 and Talent et al. 1993). when 41% of the species present were new. In in the patulus Zone new species made up 23% of the contrast the Upper Taravale Transgression which tabulate species present. The onset of the Mt Frome took place through the perbonus-gronbergi and Regression is marked by the disappearance of 32% inversus-laticostatus intervals was associated with of species across the costatus / australis interval. the disappearance of 45% of tabulate species across Scattered species losses in most tabulate families the zonal boundary. This disappearance was due to across these intervals may be due to a more the replacement of carbonate platform facies by extensive regressive phase than indicated by these muddy, pelagic facies. The Upper Taravale two local regressions. Talent (1988b) suggested that Transgression appears to be associated with the the Hatchery Creek Regression may have marked Daleje event and a global transgression which the beginning of a series of northward moving occurred at this time (Talent et al. 1993). A major diachronous regressions. This could also offer an transgression commenced in the inversus-laticostatus explanation for the scattered nature of the zone in the Broken River area of north Queensland. extinctions at this time. One way of testing this This is marked by a shales with minor carbonates in would be to examine faunas in the platform the Chinamans Creek Limestone at Lockup Well carbonates of the Broken River area of north and Chinamans Creek. Less than 10% of tabulate Queensland. There is no evidence of a regressive species at this time were first appearances. event here and any extinctions would presumably A local tectonically-based regression at the be decoupled from regression based extinctions serotinus/patulus boundary, the Hatchery Creek elsewhere. Regression in the Yass area of southern New South Little change occurred in tabulate species Wales does not appear to have had any initial effect. diversity until the Givetian when 41% of species The earliest Eifelian Mt Frome Regression, although disappeared across the hemiansatus/varcus interval. related to local tectonics, coincides with substantial This does not coincide with any known losses among the pachyporids and the transgressive or regressive episode. Disappearance disappearance
Recommended publications
  • Givetian Brachiopods from the Trois-Fontaines Formation (Belgium, Dinant Synclinorium)
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 75: 5-23, 2005 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 75: 5-23, 2005 Givetian brachiopods from the Trois-Fontaines Formation at Marenne (Belgium, Dinant Synclinorium) by Jacques GODEFROID & Bernard MOTTEQUIN Godefroid, J. & Mottequin. B„ 2005. — Givetian brachiopods from sisting of five units (thickness of these units from the base the Trois-Fontaines Formation at Marenne (Belgium, Dinant Syncli¬ to the norium). Bulletin de l'Institut royal des Sciences naturelles de Belgi¬ top: 26 m, 11 m, 23 m, 3.2 m, 23 m) (Fig. 3). The que, Sciences de la Terre, 75: 5-23, 2 pis., 9 figs., 4 tables, Bruxelles- brachiopods described herein have been collected Brussel, March 31, 2005 - ISSN 0374-6291. in the dark, well-bedded and bioclastic limestones with silty and crinoidal levels (unit 1), in the fine, dark co- loured, well-bedded limestones (unit 3) and in the crinoi¬ Abstract dal limestones rich in Scoliopora (unit 4). In units 1 and 3, although some beds are very rich in The brachiopods sampled from the Trois-Fontaines Formation in the brachiopods (some of them very large), it is difficult to Marenne quarry are mainly represented by two species: Spinatrypina sample well-preserved material and present the complete (Spinatrypina) fontis n. sp. and Eifyris socia n. sp. Orthid, rhyncho- inventory of the fauna. On the other hand, in unit 4, nellid, spiriferid and terebratulid brachiopods are also present but much rarer. Among them a new species, Bornhardtina equitis n.
    [Show full text]
  • Biodiversity, Distribution and Patterns of Extinction of the Last Odontopleuroid Trilobites During the Devonian (Givetian, Frasnian)
    Geol. Mag. 144 (5), 2007, pp. 777–796. c 2007 Cambridge University Press 777 doi:10.1017/S0016756807003779 First published online 13 August 2007 Printed in the United Kingdom Biodiversity, distribution and patterns of extinction of the last odontopleuroid trilobites during the Devonian (Givetian, Frasnian) ∗ RAIMUND FEIST & KENNETH J. MCNAMARA† ∗Laboratoire de Paleontologie,´ Institut des Sciences de l’Evolution, Universite´ Montpellier II, Cc 062, Place E. Bataillon, 34095 Montpellier, France †Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK (Received 18 September 2006; accepted 22 February 2007) Abstract – Biostratigraphical ranges and palaeogeographical distribution of mid-Givetian to end- Frasnian odontopleurids are investigated. The discovery of Leonaspis rhenohercynica sp. nov. in mid-Givetian strata extends this genus unexpectedly up to the late Middle Devonian. New material of Radiaspis radiata (Goldfuss, 1843) and the first koneprusiine in Britain, Koneprusia? sp., are described from the famous Lummaton shell-bed, Torquay, Devon. New taxa of Koneprusia, K. serrensis, K. aboussalamae, K. brevispina,andK. sp. A and K. sp. B are defined. Ceratocephala (Leonaspis) harborti Richter & Richter, 1926, is revised and reassigned to Gondwanaspis Feist, 2002. Two new species of Gondwanaspis, G. dracula and G. spinosa, plus three others left in open nomenclature, are described from the late Frasnian of Western Australia. A further species of Gondwanaspis, G. prisca, is described from the early Frasnian of Montagne Noire. Species of Gondwanaspis are shown to possess a number of paedomorphic features. A functional analysis suggests that, unlike other odontopleurids, Gondwanaspis actively fed and rested with the same cephalic orientation. The sole odontopleurid survivors of the severe terminal mid-Givetian biocrisis (‘Taghanic Event’) belong to the koneprusiine Koneprusia in the late Givetian and Frasnian, and, of cryptogenic origin, the acidaspidine Gondwanaspis in the Frasnian.
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods Permalink https://escholarship.org/uc/item/1ts4n5h0 Journal Paleobiology, 40(4) ISSN 0094-8373 Authors Harnik, PG Fitzgerald, PC Payne, JL et al. Publication Date 2014 DOI 10.1666/14006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods Author(s): Paul G. Harnik, Paul C. Fitzgerald, Jonathan L. Payne, and Sandra J. Carlson Source: Paleobiology, 40(4):675-692. 2014. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/14006 URL: http://www.bioone.org/doi/full/10.1666/14006 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Paleobiology, 40(4), 2014, pp. 675–692 DOI: 10.1666/14006 Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods Paul G.
    [Show full text]
  • Playford P.E. and Lowry D.C. 1966: Devonian Reef Complexes of the Canning Basin, Western Australia
    Playford P.E. and Lowry D.C. 1966: Devonian reef complexes of the Canning Basin, Western Australia. Geol. Survey W.A. Bull 118, 150 p. SUMMARY A series of Middle and Upper Devonian reef complexes is well exposed in rough limestone ranges extending for about 180 miles along the northern margin of the Canning Basin in the Kimberley District of Western Australia. They occur in a structural subdivision of the basin named the Lennard Shelf. Four basic facies are recognized in the reef complexes - the reef, back-reef, fore-reef, and inter-reef facies. The reef and back-reef facies together make up limestone platforms which, in Devonian times, stood some tens to hundreds of feet above the floor of the surrounding inter-reef basins. They can be compared with the present-day platforms of the Bahama Banks and associated limestone bank areas of Florida, Cuba, and the Gulf of Mexico. The reef facies occurs as a narrow rim (which may be discontinuous) around each platform. The platforms are flanked by fore-reef talus deposits having steep depositional dips, and these interfinger with the surrounding inter-reef deposits. The reefs are described as atolls, fringing reefs, and barrier reefs, and the platforms cover areas ranging from a few acres to hundreds of square miles. The maximum thickness of the reef complexes may exceed 3,000 feet. The reef complexes grew on a basement of Precambrian granitic and metamorphic rocks, except the Emanuel Range reef complex, which grew partly at least on Ordovician sediments. The reef complexes developed around islands and promontories in the basement rocks and along the Devonian mainland shore.
    [Show full text]
  • Permophiles International Commission on Stratigraphy
    Permophiles International Commission on Stratigraphy Newsletter of the Subcommission on Permian Stratigraphy Number 66 Supplement 1 ISSN 1684 – 5927 August 2018 Permophiles Issue #66 Supplement 1 8th INTERNATIONAL BRACHIOPOD CONGRESS Brachiopods in a changing planet: from the past to the future Milano 11-14 September 2018 GENERAL CHAIRS Lucia Angiolini, Università di Milano, Italy Renato Posenato, Università di Ferrara, Italy ORGANIZING COMMITTEE Chair: Gaia Crippa, Università di Milano, Italy Valentina Brandolese, Università di Ferrara, Italy Claudio Garbelli, Nanjing Institute of Geology and Palaeontology, China Daniela Henkel, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany Marco Romanin, Polish Academy of Science, Warsaw, Poland Facheng Ye, Università di Milano, Italy SCIENTIFIC COMMITTEE Fernando Álvarez Martínez, Universidad de Oviedo, Spain Lucia Angiolini, Università di Milano, Italy Uwe Brand, Brock University, Canada Sandra J. Carlson, University of California, Davis, United States Maggie Cusack, University of Stirling, United Kingdom Anton Eisenhauer, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany David A.T. Harper, Durham University, United Kingdom Lars Holmer, Uppsala University, Sweden Fernando Garcia Joral, Complutense University of Madrid, Spain Carsten Lüter, Museum für Naturkunde, Berlin, Germany Alberto Pérez-Huerta, University of Alabama, United States Renato Posenato, Università di Ferrara, Italy Shuzhong Shen, Nanjing Institute of Geology and Palaeontology, China 1 Permophiles Issue #66 Supplement
    [Show full text]
  • Givetian Brachiopod Faunas of the Palentian Domain (N Spain)
    GIVETIAN BRACHIOPODS PALENTIAN DOMAIN 43 GIVETIAN BRACHIOPOD FAUNAS OF THE PALENTIAN DOMAIN (N SPAIN) Jenaro L. GARCÍA-ALCALDE Departmento de Geología (Paleontología), Universidad de Oviedo, c/ Jesús Arias de Velasco, s/n, 33005 Oviedo, Asturias, Spain. email: [email protected] García-Alcalde, J.L. 2010. Givetian Brachiopod faunas of the Palentian Domain (N Spain). [Braquiópodos del Givetiense del Dominio Palentino (Norte de España).] Revista Española de Paleontología, 25 (1), 43-69, ISSN 0213-6937 ABSTRACT The origin, evolution, structural and stratigraphical features of the Palentian Domain (Cantabrian Mountains, N Spain) are summarily described. The boundaries of the Givetian succession (ca. 40 m thick) in that area are es- tablished from previously known conodont and ammonoid data. The base of the Givetian is situated in the up- per part of the Gustalapiedra Formation, at the base of the La Pedrosa Member. The upper Givetian boundary is situated at the top of the lower calcareous interval of the Cardaño Formation. Middle Devonian brachiopods are scarce in the Palentian Domain. In fact no Givetian form has been cited in the area until now. In this paper nine brachiopod species (three new) of the Givetian interval are described and figured: Skenidium cf. polonicum, Rhyssochonetes aff. douvillei, Prodavidsonia havliceki n. sp., Bifida aff. lepida, Ambothyris cf. infima, “Pyrami- dalia” palentina n. sp., Cingulodermis sotoana n. sp., Parastringocephalus cf. dorsalis, and Ense andrea. The genera Skenidium, Rhyssochonetes, Ambothyris, Cingulodermis, Parastringocephalus, and Ense are cited in Spain for the first time. Parastringocephalus is moreover the first stringocephaline found in Palencia. “Pyramidalia” palentina n. sp. is an impunctate form provided with a nearly complete symphytium, a delthyrial plate and short dental plates; these features separate the genus Pyramidalia both from Cyrtinaella and Thomasaria with which the former genus has sometimes been synonymised.
    [Show full text]
  • From the Givetian (Upper Middle Devonian) of the Northwestern Brooks Range, Northern Alaska
    Sullivan, R.M. and Lucas, S.G., eds., 2015, Fossil Record 4. New Mexico Museum of Natural History and Science Bulletin 67. 5 ALASKOTHYRIS NEW GENUS (FAMILY STRINGOCEPHILIDAE, SUBFAMILY RENSSELANDIINAE) FROM THE GIVETIAN (UPPER MIDDLE DEVONIAN) OF THE NORTHWESTERN BROOKS RANGE, NORTHERN ALASKA ROBERT B. BLODGETT1, VALERYI V. BARANOV2 and VINCENT L. SANTUCCI3 12821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected] 2Institute of Diamond and Precious Metals Geology, Yakutsk Research Center, Siberian Division, Russian Academy of Sciences, pr. Lenina 39, Yakutsk, 677980, Sakha Republic (Yakutia), Russia; 3National Park Service-Geologic Resources Division, 1201 Eye Street, NW (Room 1146), Washington, D.C. 20005, Abstract—We describe a new genus and species of Middle Devonian (Givetian) brachiopod, Alaskothyris frosti n. gen., n. sp., found in Middle Devonian (Givetian) strata exposed near Nigtun Lake, Howard Pass 1:250,000 scale quadrangle, northwestern Alaska. The species occurs in a single monotaxic, coquinoid brachiopod accumulation within Noatak National Preserve. This rensselandiinid brachiopod is significant in that it represents only the fourth species of a Middle Devonian brachiopod ever described from the northwestern Alaska, an area with thick Devonian platform carbonate and siliciclastic-dominated strata successions. Despite the great areal extent of Devonian strata here, the area has had only limited paleontological study, and remains almost a terra incognita for Devonian fossils. The strata hosting the new brachiopod genus and species are part of the Arctic Alaska superterrane (Blodgett et al., 2002). Evaluation of the taxonomic diversity and character of the Devonian fauna found here is important in determining the paleogeographic origin of this superterrane and the paleobiogeography of the Bering Strait region separating northeast Russia and northwestern Alaska.
    [Show full text]
  • The Range and Distribution of British Fossil Brachiopoda
    Lobley—Distribution of British Brachiopoda. 497 Climaxodus ovatus, sp. nov. The specimen is perfect, the length being one inch, width at broadest part seven-tenths, and at narrow posterior end five-tenths; the crown is crossed by five transverse ridges, the distance between the ridges uniformly diminishes from front to back of tooth; the crown is considerably convex except be- tween the first transverse ridge and the anterior edge of the tooth, where it is slightly concave; the summit of each ridge is marked at right angles to the ridges, or from front to back of the tooth with close, nearly parallel lines consisting of a cream-coloured irridescent substance. The tooth is attached to a long plate, the length of which is one-third greater than that of the tooth, and towards the posterior part of the tooth the supporting plate presents a root-like appear- ance ; the thickness of the tooth is one-tenth of an inch, that of the plate to which it is attached one-eighth of an inch. The structure of the bony plate is open and reticulated, closely resembling in structure the base of the palatal teeth of the Gtenodi. In a lecture which I delivered to the members of the Mechanics' Institution, Newcastle-on-Tyne, on 28th September, on the Fauna of the Low Main Coal-shale, I described and named the only specimen then in my possession as Climaxodus ovatus. To-day (October 10) I have heard that Mr. Atthey, of Gosforth, read a paper before the members of the Tyneside Naturalists' Field-club yesterday, the 9th, and described a similar tooth found by him during his long and painstaking researches in this department of palaeontology.
    [Show full text]
  • A Transitional Stringocephalid from the Holy Cross Mountains, Poland, and Its Evolutionary and Stratigraphic Significance
    Acta Geologica Polonica, Vol. 56 (2006), No. 2, pp. 171-176 A transitional stringocephalid from the Holy Cross Mountains, Poland, and its evolutionary and stratigraphic significance ADAM T. HALAMSKI1 AND TOMASZ SEGIT2 1Polish Academy of Sciences, Institute of Paleobiology, Twarda 51/55, PL-00-818 Warszawa, Poland, E-mail: [email protected] 2Warsaw University, Faculty of Geology, ˚wirki i Wigury 93, PL-02-089 Warszawa, Poland. E-mail: [email protected] ABSTRACT: HALAMSKI, A.T. & SEGIT, T. 2006. A transitional stringocephalid from the Holy Cross Mountains, Poland, and its evo- lutionary and stratigraphic significance. Acta Geologica Polonica, 56 (2), 171-176. Warszawa. Stringocephalini gen. et sp. indet. A shows microscopic capillae on both valves, possibly representing a transitional evolutionary stage between smooth-shelled Stringocephalus and capillate Parastringocephalus. The latter genus seems therefore to have originated directly from Stringocephalus, and not via Subsinucephalus, as suggested earlier. The occurrence of Stringocephalini gen. et sp. indet. A indicates an early Givetian age of beds cropping out at B∏onia Sier˝awskie near Âwi´tomarz. Key words: Stringocephalidae, Brachiopoda, Givetian, Evolution, Stratigraphy, Holy Cross Mountains. INTRODUCTION Stringocephalini gen. et sp. indet. A, suggests that Parastringocephalus may have originated directly from “Stringocephalus burtini” had long been a catch-all the genus Stringocephalus. The object of the present name for Givetian thick-shelled brachiopods, and the paper is therefore to suggest an alternative evolutionary family is a classic index fossil of Givetian strata world- scenario for the Stringocephalini, and to outline a pro- wide. Refinement of the taxonomy of the family posed biostratigraphic correlation of beds in which the Stringocephalidae by STRUVE (1992) provided diagnosis described specimen was found.
    [Show full text]
  • Full Text -.: Palaeontologia Polonica
    ACADEMIE .POLONAISE DES SCIENCES PALAEONTOLOGIA POLONICA-No. 17, 1966 MIDDLE DEVONIAN BRACHIOPODS OF THE BODZENTYN SYNCLINE (HOLY CROSS MOUNTAINS, POLAND) (BRACHIOPODY ZE SRODKOWEGO DEWONU SYNKLINY BODZENTYNSKIEJ GdR SWI~TOKRZYSKICH) BY GERTRUDA BIERNAT (WITH SI TEXT-FIGURES AND 32 PLATES) WARSZAWA 1966 PANSTWOWE WYDAWNICTWO NAUKOWE REDAKTOR - REDACTEUR ROMAN KOZLOWSKI Czlonek rzeczywisty Polskie] Akademii Nauk Mem bre de I'Acadernie Polonaise des Science s Redaktor techniczny - Redacteur technique Weronika Sipowicz Adres Redakcji - Adresse de la Redaction Instirut de Paleozoologie de l'Academie Polonaise des Sciences Warszawa 22, AI. Zwirki i Wigury Nr 6 Copyright by Panstwowe Wydawnictwo Naukowe 1966 Printed in Poland Panstwowe Wydawnictwo" Naukowe - Warszawa Naklad 800 + ISO egz, Ark . wyd. 21,S. Arkuszy druk. 10'/.. + 32 wkladki. Papier druk. sat . kl. III 61 x 86, 90 g. Oddano do skladania 2. IX . 1965 r. Podpisano do druku 8. XII. 1966 r, Druk ukonczono w styczniu 1967 r. Drukarnia Uniwersytetu Jagiellonskiego w Krakowie Zam. 878/65 CONTENTS Pase Introduction. 7 Acknowledgements 8 GENERAL PART Characteristic and state of preservation of the studied material . ... 9 Remarks on stratigraphy of the Skaly beds. .. .. .. 11 Lithofacial dependence of brachiopods in the Skaly and Pokrzywianka beds 14 Growth stages and their presence in populations 18 Young individuals 18 Adult individuals . 19 Gerontic individuals. 20 Dwarf forms . 21 Asymmetry . 22 Remarks on individual variability of brachiopods . 24 SYSTEMATIC PART Order Pentamerida SCHUCHERT & COOPER, 1931 27 Suborder Pentameridina SCHUCHERT & COOPER, 1931 27 Family Enantiosphenidae TORLEY, 1934 . .. 27 Genus Enantiosphen WHIDBORNE, 1893 .... 27 Enantiosphen sp. cf. Enantiosphen vicaryi (DAVIDSON, 1882) . 27 Family Pentameridae McCoy, 1844 . .. .. 28 Subfamily Gypidulinae SCHUCHERT & LE VENE, 1929 28 Genus Gypidula HALL, 1867 .
    [Show full text]
  • Full Article in PDF Format
    Estonian Journal of Earth Sciences, 2020, 69, 1, 2020–36–36 https://doi.org/10.3176/earth.2020.02 Muscle scars, mode of life and systematics of Pollicina (Mollusca) from the Ordovician of Baltica John S. Peel Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE­75236 Uppsala, Sweden; [email protected] Received 12 August 2019, accepted 17 October 2019, available online 19 December 2019 Abstract. Pollicina is a distinctive, but uncommon, univalved mollusc originally described from the Middle Ordovician (Darriwilian Stage) of the Baltic. The slender, bilaterally symmetrical shell expands slowly and is curved through up to about 90 degrees, but straightens in the latest growth stages. Pollicina corniculum, the type species from the St Petersburg region of Russia is redescribed, as is Pollicina crassitesta, the most common representative from the Tallinn area of Estonia. Muscle scars in P. crassitesta form a continuous circum­apertural band on internal moulds about half way between the apex and the apertural margin. The bilaterally symmetrical shell, orthocline aperture, circum­apertural muscle scar and frequent displacement of the apertural margin, as evidenced by dislocations in growth ornamentation, indicate that Pollicina lived as a limpet, clamped against the substrate. Suggestions that it was an open coiled gastropod lying on the sediment surface are rejected. As with most Ordovician limpet­formed shells, assignment of Pollicina to Tergomya or Gastropoda is equivocal, even controversial, not least on account of the tall shell and muscle band. Despite similarities with the tergomyan Cyrtolites, Pollicina is placed tentatively together with the archinacelloidean gastropods. Key words: Mollusca, Gastropoda, muscle scars, habit, Ordovician, Darriwilian, Baltica.
    [Show full text]
  • Tullypothyridina, New Late Givetian Rhynchonellid (Brachiopod) Genus
    BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 73: 29-51, 2003 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 73: 29-51, 2003 Tullypothyridina, new late Givetian rhynchonellid (brachiopod) genus by Paul SARTENAER Sartenaer, P., 2003 - Tullypothyridina, new late Givetian rhyncho­ name, given to a fossil by Mr. Phillips, which, from the figure nellid (brachiopod) genus. Bulletin de l ’Institut royal des Sciences and description conjoined, shows identity with that of the Tully naturelles de Belgique, Sciences de la Terre. 73:29-51, 1 pl., 2 textfigs., 1 table; Bruxelles-Brussel, March 31, 2003. - ISSN 0374-6291. limestone” (p. 164). V a n u x e m was impressed by the similarity of the specimen he figured ( 1842, fig. 41 .No. 1 = antero-ventral, lateral and posterior views) with the one figured by P h i l l i p s (1841, pi. 34, fig. 150 = anterior view). It was an excellent Abstract observation, because Phillips’s figured specimen is a good representative of one of the various forms from South Devon A new genus, Tullypothyridina, type species T. venustula ( H a l l , grouped under the name “ cuboides” , The specimen described 1867), is described from the late Givetian of central New York, by S o w e r b y (1840, explanation of pi. 56, fig. 24 = anterior and Pennsylvania, eastern Kentucky, and probably eastern Iowa. The type species of the related genus Hypothyridina B u c k m a n , 1906, H. cu­ dorsal views) shows but a faint resemblance to the one figured boides ( S o w e r b y , 1840), the name of which was originally and sub­ by V a n u x e m .
    [Show full text]