Electronic Colloquium on Computational Complexity, Report No. 131 (2013) Collapsing Exact Arithmetic Hierarchies Nikhil Balaji and Samir Datta Chennai Mathematical Institute fnikhil,
[email protected] Abstract. We provide a uniform framework for proving the collapse of the hierarchy, NC1(C) for an exact arith- metic class C of polynomial degree. These hierarchies collapses all the way down to the third level of the AC0- 0 hierarchy, AC3(C). Our main collapsing exhibits are the classes 1 1 C 2 fC=NC ; C=L; C=SAC ; C=Pg: 1 1 NC (C=L) and NC (C=P) are already known to collapse [1,18,19]. We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof 0 1 from [8] where it is used to prove the collapse of the AC (C=NC ) hierarchy. It is essentially based on a polynomial degree characterization of each of the base classes. 1 Introduction Collapsing hierarchies has been an important activity for structural complexity theorists through the years [12,21,14,23,18,17,4,11]. We provide a uniform framework for proving the collapse of the NC1 hierarchy over an exact arithmetic class. Using 0 our method, such a hierarchy collapses all the way down to the AC3 closure of the class. 1 1 1 Our main collapsing exhibits are the NC hierarchies over the classes C=NC , C=L, C=SAC , C=P. Two of these 1 1 hierarchies, viz. NC (C=L); NC (C=P), are already known to collapse ([1,19,18]) while a weaker collapse is known 0 1 for a third one viz.