Polylogarithmic-Round Interactive Proofs for Conp Collapses the Exponential Hierarchy

Total Page:16

File Type:pdf, Size:1020Kb

Polylogarithmic-Round Interactive Proofs for Conp Collapses the Exponential Hierarchy Polylogarithmic-round Interactive Proofs for coNP Collapses the Exponential Hierarchy Alan L. Selman¤ Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 Samik Senguptay Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 January 13, 2004 Abstract It is known [BHZ87] that if every language in coNP has a constant-round interactive proof system, then the polynomial hierarchy collapses. On the other hand, Lund et al. [LFKN92] have shown that #SAT #P , the -complete function that outputs the number of satisfying assignments of a Boolean for- mula, can be computed by a linear-round interactive protocol. As a consequence, the coNP-complete set SAT has a proof system with linear rounds of interaction. We show that if every set in coNP has a polylogarithmic-round interactive protocol then the expo- nential hierarchy collapses to the third level. In order to prove this, we obtain an exponential version of Yap's result [Yap83], and improve upon an exponential version of the Karp-Lipton theorem [KL80], obtained first by Buhrman and Homer [BH92]. 1 Introduction Ba´bai [Ba´b85] and Ba´bai and Moran [BM88] introduced Arthur-Merlin Games to study the power of randomization in interaction. Soon afterward, Goldwasser and Sipser [GS89] showed that these classes are equivalent in power to Interactive Proof Systems, introduced by Goldwasser et al. [GMR85]. Study of interactive proof systems and Arthur-Merlin classes has been exceedingly successful [ZH86, BHZ87, ZF87, LFKN92, Sha92], eventually leading to+the discovery of +Probabilistically Checkable Proofs [BOGKW88, LFKN92, Sha92, BFL81, BFLS91, FGL 91, AS92, ALM 92]. Interactive proof systems are successfully placed relative to traditional complexity classes. In particular, k IP[k] ¦p IP[poly] = PSPACE it is known that for any constant , 2 [BM88], and [Sha92]. However, the relationship between coNP and interactive proof systems is not entirely clear. On the one hand, Boppana, Ha˚stad and Zachos [BHZ87] proved that if every set in coNP has a constant-round interactive proof system, then the polynomial-time hierarchy collapses below the second level. On the other hand, the best interactive #SAT protocol for any language in coNP comes from the result of Lund et al. [LFKN92], who show that , a problem hard for the entire polynomial-time hierarchy [Tod91], is accepted by an interactive proof system O(n) n with rounds of interaction on an input of length . Can every set in coNP be accepted by an interactive ¤Research partially supported by NSF grant CCR-0307077. Email: [email protected] yEmail: [email protected] 1 proof system with more that constant but sublinear number of rounds? Answering this question has been the motivation for this paper. We show in this paper that coNP cannot have a polylogarithm§ipc-round interac§tpive proof system unless NEXP 2 = coNEXP 2 the exponential hierarchy collapses to the third level, i.e., . Three principal steps lead to the proof of our main result, and these results are of independent interest. Note that although we use Arthur-Merlin protocols to obtain our results, our main theorem holds for interactive proof systems as well m due to the result of Goldwasser and Sipser [GS89], who showed that an interactive proof system with 2m + 4 rounds can be simulated by an -move Arthur-Merlin protocol. m l(n) ² An Arthur-Merlin protocol with moves where both Arthur and Merlin exchange at most bits at every move can be simulated by a two-move AM protocol where Arthur moves first and uses O(l(n)m 1) ¡ random bits (Theorem 3.1). L 2polylog L ² If is accepted by a two-move AM protocol where Arthur uses random bits, then belongs NP=2polylog to the advice class (Lemma 3.3). NP=2polylog NP =2polylog ² If coNP (equivalently coNP ) then §p §p exp NP NEXP 2 = coNEXP 2 = S P : 2 ± (Theorem 4.1) NP In addition to these results, we improve upon a result of Buhrman and Homer [BH92], showing that if 2polylog NEXPNP = coNEXPNP = SEXP has -size family of circuits, then 2 . We note that Goldreich and Ha˚stad [GH98] and Goldreich, Vadhan, and Wigderson [GVW01] have studied Arthur-Merlin games and interactive proof systems with bounded message complexity. Their results m are incomparable to our Theorem 3.1. In particular, our simulation of an -move Arthur-Merlin protocol l by a 2-move Arthur-Merlin protocol assumes that , the number of message bits used in every move, is polynomial in the length of the input, and we obtain that the number of random bits used by Arthur in the l 2-move protocol is not exponential in . This is crucial in order to get Theorem 4.1. 2 Preliminaries For definitions of standard complexity classes, we refer the reader to Homer and Selman [HS01]. The exponential hierarchy is defined as follows: exp exp NP exp EXP = §0 ; NEXP = §1 ; NEXP = §2 ; k 0 and in general, for , exp p ¸ §k §k+1 = NEXP : k 0 For every ¸ , exp exp ¦ = L L § : k f 2 k g k polylog = logk n 2polylog ¯= 2log n We define k>0 and ¯ k>0 . Let C be a complexity class. A set L =2polylog s : 1 § k > 0 A 2 C if there is aSfunction ¤ 7! ¤, some cSonstant , and a set 2 C such that k n s(1n) 2log n 1. For every , j j · , and x x L (x; s(1 x )) A A 2. For all , 2 , j j 2 . Here is called the witness language. 2 =2polylog co co =2polylog It is easy to see that D C if and only if D C . Ba´bai [Ba´b85] introduced Arthur-Merlin protocol, a combinatorial game that is played by Arthur, a probabilistic polynomial-time machine, and Merlin, a computationally unbounded Turing machine. Arthur can use random bits, but these bits are public, i.e., Merlin can see them and move accordingly. x x L Given an input string , Merlin tries to convince Arthur that belongs to some language . The game consists of a predetermined finite number of moves with Arthur and Merlin moving alternately. In each move Arthur (or Merlin) prints a finite string on a read-write communication tape. Arthur's moves depend x on his random bits. After the last move, Arthur either accepts or does not accept . m > 0 L AM[m] MA[m] Definition 2.1 ([Ba´b85, BM88]) For any , a language is in (respectively ) if for x n every string of length m ² The game consists of moves ² Arthur (resp., Merlin) moves first ² After the last move, Arthur behaves deterministically to either accept or not accept the input string x L x ² If 2 , then there exists a3 sequence of moves by Merlin that leads to the acceptance of by Arthur with probability is at least 4 x = L x 1 ² if 2 then for all possible moves of Merlin, the probability that Arthur accepts is less than 4 . AM[k] k > 1 AM[2] = AM Ba´bai and Moran [BM88] showed that , where is some constant, is the same as . MA[2] = MA AM[1] = BPP MA[1] = M = NP MA AM Note that , , and . Ba´bai [Ba´b85] proved that . Now we need to extend modestly the notion of Arthur-Merlin protocols. In the following limited manner, we consider the possibility that Arthur is a probabilisitic Turing machine, but not necessarily polynomial- f : N N AM(f) time-bounded. Let 7! be some function. Then we define the class to be the class of languages accepted by protocols in which there are only two moves, Arthur moves first, and Arthur can use f(n) n f at most random bits on an input of length . In particuclar, we will have occasion to consider to be AM(2log n) c quasipolynomial; that is, we will consider the class , where is a positive constant. We note the following standard proposition. E 3 p( ) Proposition 2.2 Let be an event that occurs with probability at least 4 . Then, for any polynomial def ¢ p(n) n c t = c p(n) E such that ¸ , there is a constant such that within £ independent trials, occurs for t (1 1 ) more than 2 times with probability ¡ 2p(n) . Sexp S We define 2 as the exponential version of the 2 operator defined by Russell and Sundaram [RS98] L Sexp k > 0 A x 0; 1 n and Canetti [Can96]. A set is in 2 ±C if there is some and 2 C such that for every 2 f g , x L = y z (x; y; z) A; 2 ) 9 8 2 and x = L = z y (x; y; z) = A; 2 ) 9 8 2 k y ; z 2n where j j j j · . P def exp S2 = S2 P S2 Similar to exp ± , the class ± C can be thought of as a game between two provers and a L S x n x L verifier. Let 2 2 ± C. On any input of length , the Yes-prover attempts to show that 2 , and the x = L x x L No-prover attempts to show that 2 . Both the proofs are at most exponentially long in j j. If 2 , x L then there must be a proof by the yes-prover (called a yes-proof) that convinces the verifier that 2 no x = L matter what the proof provided by the no-prover (called a no-proof) is; symmetrically, if 2 , then there x x must exist some no-proof such that the verifier rejects irrespective of the yes-proof. For every input , 3 there is a yes-prover and a no-prover such that exactly one of them is correct.
Recommended publications
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • The Polynomial Hierarchy
    ij 'I '""T', :J[_ ';(" THE POLYNOMIAL HIERARCHY Although the complexity classes we shall study now are in one sense byproducts of our definition of NP, they have a remarkable life of their own. 17.1 OPTIMIZATION PROBLEMS Optimization problems have not been classified in a satisfactory way within the theory of P and NP; it is these problems that motivate the immediate extensions of this theory beyond NP. Let us take the traveling salesman problem as our working example. In the problem TSP we are given the distance matrix of a set of cities; we want to find the shortest tour of the cities. We have studied the complexity of the TSP within the framework of P and NP only indirectly: We defined the decision version TSP (D), and proved it NP-complete (corollary to Theorem 9.7). For the purpose of understanding better the complexity of the traveling salesman problem, we now introduce two more variants. EXACT TSP: Given a distance matrix and an integer B, is the length of the shortest tour equal to B? Also, TSP COST: Given a distance matrix, compute the length of the shortest tour. The four variants can be ordered in "increasing complexity" as follows: TSP (D); EXACTTSP; TSP COST; TSP. Each problem in this progression can be reduced to the next. For the last three problems this is trivial; for the first two one has to notice that the reduction in 411 j ;1 17.1 Optimization Problems 413 I 412 Chapter 17: THE POLYNOMIALHIERARCHY the corollary to Theorem 9.7 proving that TSP (D) is NP-complete can be used with DP.
    [Show full text]
  • Collapsing Exact Arithmetic Hierarchies
    Electronic Colloquium on Computational Complexity, Report No. 131 (2013) Collapsing Exact Arithmetic Hierarchies Nikhil Balaji and Samir Datta Chennai Mathematical Institute fnikhil,[email protected] Abstract. We provide a uniform framework for proving the collapse of the hierarchy, NC1(C) for an exact arith- metic class C of polynomial degree. These hierarchies collapses all the way down to the third level of the AC0- 0 hierarchy, AC3(C). Our main collapsing exhibits are the classes 1 1 C 2 fC=NC ; C=L; C=SAC ; C=Pg: 1 1 NC (C=L) and NC (C=P) are already known to collapse [1,18,19]. We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof 0 1 from [8] where it is used to prove the collapse of the AC (C=NC ) hierarchy. It is essentially based on a polynomial degree characterization of each of the base classes. 1 Introduction Collapsing hierarchies has been an important activity for structural complexity theorists through the years [12,21,14,23,18,17,4,11]. We provide a uniform framework for proving the collapse of the NC1 hierarchy over an exact arithmetic class. Using 0 our method, such a hierarchy collapses all the way down to the AC3 closure of the class. 1 1 1 Our main collapsing exhibits are the NC hierarchies over the classes C=NC , C=L, C=SAC , C=P. Two of these 1 1 hierarchies, viz. NC (C=L); NC (C=P), are already known to collapse ([1,19,18]) while a weaker collapse is known 0 1 for a third one viz.
    [Show full text]
  • Polynomial Hierarchy
    CSE200 Lecture Notes – Polynomial Hierarchy Lecture by Russell Impagliazzo Notes by Jiawei Gao February 18, 2016 1 Polynomial Hierarchy Recall from last class that for language L, we defined PL is the class of problems poly-time Turing reducible to L. • NPL is the class of problems with witnesses verifiable in P L. • In other words, these problems can be considered as computed by deterministic or nonde- terministic TMs that can get access to an oracle machine for L. The polynomial hierarchy (or polynomial-time hierarchy) can be defined by a hierarchy of problems that have oracle access to the lower level problems. Definition 1 (Oracle definition of PH). Define classes P Σ1 = NP. P • P Σi For i 1, Σi 1 = NP . • ≥ + Symmetrically, define classes P Π1 = co-NP. • P ΠP For i 1, Π co-NP i . i+1 = • ≥ S P S P The Polynomial Hierarchy (PH) is defined as PH = i Σi = i Πi . 1.1 If P = NP, then PH collapses to P P Theorem 2. If P = NP, then P = Σi i. 8 Proof. By induction on i. P Base case: For i = 1, Σi = NP = P by definition. P P ΣP P Inductive step: Assume P NP and Σ P. Then Σ NP i NP P. = i = i+1 = = = 1 CSE 200 Winter 2016 P ΣP Figure 1: An overview of classes in PH. The arrows denote inclusion. Here ∆ P i . (Image i+1 = source: Wikipedia.) Similarly, if any two different levels in PH turn out to be the equal, then PH collapses to the lower of the two levels.
    [Show full text]
  • The Polynomial Hierarchy and Alternations
    Chapter 5 The Polynomial Hierarchy and Alternations “..synthesizing circuits is exceedingly difficulty. It is even more difficult to show that a circuit found in this way is the most economical one to realize a function. The difficulty springs from the large number of essentially different networks available.” Claude Shannon 1949 This chapter discusses the polynomial hierarchy, a generalization of P, NP and coNP that tends to crop up in many complexity theoretic inves- tigations (including several chapters of this book). We will provide three equivalent definitions for the polynomial hierarchy, using quantified pred- icates, alternating Turing machines, and oracle TMs (a fourth definition, using uniform families of circuits, will be given in Chapter 6). We also use the hierarchy to show that solving the SAT problem requires either linear space or super-linear time. p p 5.1 The classes Σ2 and Π2 To understand the need for going beyond nondeterminism, let’s recall an NP problem, INDSET, for which we do have a short certificate of membership: INDSET = {hG, ki : graph G has an independent set of size ≥ k} . Consider a slight modification to the above problem, namely, determin- ing the largest independent set in a graph (phrased as a decision problem): EXACT INDSET = {hG, ki : the largest independent set in G has size exactly k} . Web draft 2006-09-28 18:09 95 Complexity Theory: A Modern Approach. c 2006 Sanjeev Arora and Boaz Barak. DRAFTReferences and attributions are still incomplete. P P 96 5.1. THE CLASSES Σ2 AND Π2 Now there seems to be no short certificate for membership: hG, ki ∈ EXACT INDSET iff there exists an independent set of size k in G and every other independent set has size at most k.
    [Show full text]
  • On the Power of Parity Polynomial Time Jin-Yi Cai1 Lane A
    On the Power of Parity Polynomial Time Jin-yi Cai1 Lane A. Hemachandra2 December. 1987 CUCS-274-87 I Department of Computer Science. Yale University, New Haven. CT 06520 1Department of Computer Science. Columbia University. New York. NY 10027 On the Power of Parity Polynomial Time Jin-yi Gaia Lane A. Hemachandrat Department of Computer Science Department of Computer Science Yale University Columbia University New Haven, CT 06520 New York, NY 10027 December, 1987 Abstract This paper proves that the complexity class Ef)P, parity polynomial time [PZ83], contains the class of languages accepted by NP machines with few ac­ cepting paths. Indeed, Ef)P contains a. broad class of languages accepted by path-restricted nondeterministic machines. In particular, Ef)P contains the polynomial accepting path versions of NP, of the counting hierarchy, and of ModmNP for m > 1. We further prove that the class of nondeterministic path-restricted languages is closed under bounded truth-table reductions. 1 Introduction and Overview One of the goals of computational complexity theory is to classify the inclusions and separations of complexity classes. Though nontrivial separation of complexity classes is often a challenging problem (e.g. P i: NP?), the inclusion structure of complexity classes is progressively becoming clearer [Sim77,Lau83,Zac86,Sch87]. This paper proves that Ef)P contains a broad range of complexity classes. 1.1 Parity Polynomial Time The class Ef)P, parity polynomial time, was defined and studied by Papadimitriou and . Zachos as a "moderate version" of Valiant's counting class #P . • Research supported by NSF grant CCR-8709818. t Research supported in part by a Hewlett-Packard Corporation equipment grant.
    [Show full text]
  • IBM Research Report Derandomizing Arthur-Merlin Games And
    H-0292 (H1010-004) October 5, 2010 Computer Science IBM Research Report Derandomizing Arthur-Merlin Games and Approximate Counting Implies Exponential-Size Lower Bounds Dan Gutfreund, Akinori Kawachi IBM Research Division Haifa Research Laboratory Mt. Carmel 31905 Haifa, Israel Research Division Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Derandomization Implies Exponential-Size Lower Bounds 1 DERANDOMIZING ARTHUR-MERLIN GAMES AND APPROXIMATE COUNTING IMPLIES EXPONENTIAL-SIZE LOWER BOUNDS Dan Gutfreund and Akinori Kawachi Abstract. We show that if Arthur-Merlin protocols can be deran- domized, then there is a Boolean function computable in deterministic exponential-time with access to an NP oracle, that cannot be computed by Boolean circuits of exponential size. More formally, if prAM ⊆ PNP then there is a Boolean function in ENP that requires circuits of size 2Ω(n).
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Inaugural - Dissertation
    INAUGURAL - DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakultat¨ der Ruprecht - Karls - Universitat¨ Heidelberg vorgelegt von Timur Bakibayev aus Karagandinskaya Tag der mundlichen¨ Prufung:¨ 10.03.2010 Weak Completeness Notions For Exponential Time Gutachter: Prof. Dr. Klaus Ambos-Spies Prof. Dr. Serikzhan Badaev Abstract The standard way for proving a problem to be intractable is to show that the problem is hard or complete for one of the standard complexity classes containing intractable problems. Lutz (1995) proposed a generalization of this approach by introducing more general weak hardness notions which still imply intractability. While a set A is hard for a class C if all problems in C can be reduced to A (by a polynomial-time bounded many-one reduction) and complete if it is hard and a member of C, Lutz proposed to call a set A weakly hard if a nonnegligible part of C can be reduced to A and to call A weakly complete if in addition A 2 C. For the exponential-time classes E = DTIME(2lin) and EXP = DTIME(2poly), Lutz formalized these ideas by introducing resource bounded (Lebesgue) measures on these classes and by saying that a subclass of E is negligible if it has measure 0 in E (and similarly for EXP). A variant of these concepts, based on resource bounded Baire category in place of measure, was introduced by Ambos-Spies (1996) where now a class is declared to be negligible if it is meager in the corresponding resource bounded sense. In our thesis we introduce and investigate new, more general, weak hardness notions for E and EXP and compare them with the above concepts from the litera- ture.
    [Show full text]
  • A Note on NP ∩ Conp/Poly Copyright C 2000, Vinodchandran N
    BRICS Basic Research in Computer Science BRICS RS-00-19 V. N. Variyam: A Note on A Note on NP \ coNP=poly NP \ coNP = Vinodchandran N. Variyam poly BRICS Report Series RS-00-19 ISSN 0909-0878 August 2000 Copyright c 2000, Vinodchandran N. Variyam. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/00/19/ A Note on NP ∩ coNP/poly N. V. Vinodchandran BRICS, Department of Computer Science, University of Aarhus, Denmark. [email protected] August, 2000 Abstract In this note we show that AMexp 6⊆ NP ∩ coNP=poly, where AMexp denotes the exponential version of the class AM.Themain part of the proof is a collapse of EXP to AM under the assumption that EXP ⊆ NP ∩ coNP=poly 1 Introduction The issue of how powerful circuit based computation is, in comparison with Turing machine based computation has considerable importance in complex- ity theory. There are a large number of important open problems in this area.
    [Show full text]
  • A Taxonomy of Proof Systems*
    ATaxonomy of Pro of Systems Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel September Abstract Several alternative formulations of the concept of an ecient pro of system are nowadays co existing in our eld These systems include the classical formulation of NP interactive proof systems giving rise to the class IP computational lysound proof systemsand probabilistical ly checkable proofs PCP which are closely related to multiprover interactive proofs MI P Although these notions are sometimes intro duced using the same generic phrases they are actually very dierent in motivation applications and expressivepower The main ob jectiveof this essay is to try to clarify these dierences This is a revised version of a survey which has app eared in Complexity Theory Retrospective II LA Hemaspaan dra and A Selman eds Intro duction In recentyears alternativeformulations of the concept of an ecient pro of system have received much attention Not only have talks and pap ers concerning these systems o o ded the eld of theoretical computer science but also some of these developments havereached the nontheory community and a few were even rep orted in nonscientic forums suchastheNew York Times Thus I am quite sure that the reader has heard of phrases suchasinteractive pro ofs and results suchasIP PSPACE By no means am I suggesting that the interest in the various formulations of ecientproof systems has gone out of prop ortion Certainly the notion of an ecient pro of system is central
    [Show full text]