Polynomial Hierarchy

Total Page:16

File Type:pdf, Size:1020Kb

Polynomial Hierarchy CSE200 Lecture Notes – Polynomial Hierarchy Lecture by Russell Impagliazzo Notes by Jiawei Gao February 18, 2016 1 Polynomial Hierarchy Recall from last class that for language L, we defined PL is the class of problems poly-time Turing reducible to L. • NPL is the class of problems with witnesses verifiable in P L. • In other words, these problems can be considered as computed by deterministic or nonde- terministic TMs that can get access to an oracle machine for L. The polynomial hierarchy (or polynomial-time hierarchy) can be defined by a hierarchy of problems that have oracle access to the lower level problems. Definition 1 (Oracle definition of PH). Define classes P Σ1 = NP. P • P Σi For i 1, Σi 1 = NP . • ≥ + Symmetrically, define classes P Π1 = co-NP. • P ΠP For i 1, Π co-NP i . i+1 = • ≥ S P S P The Polynomial Hierarchy (PH) is defined as PH = i Σi = i Πi . 1.1 If P = NP, then PH collapses to P P Theorem 2. If P = NP, then P = Σi i. 8 Proof. By induction on i. P Base case: For i = 1, Σi = NP = P by definition. P P ΣP P Inductive step: Assume P NP and Σ P. Then Σ NP i NP P. = i = i+1 = = = 1 CSE 200 Winter 2016 P ΣP Figure 1: An overview of classes in PH. The arrows denote inclusion. Here ∆ P i . (Image i+1 = source: Wikipedia.) Similarly, if any two different levels in PH turn out to be the equal, then PH collapses to the lower of the two levels. P P P P Theorem 3. If Σi = Σi 1, then Σj = Σi for all j i. + ≥ 1.2 Quantifier definition of PH Theorem 4 (Quantifier definition of PH). P A language L Σi iff there is some relation R(x, y1,..., yi) P, polymomial q so that • 2 2 x L y1, y2 ...Qi yi R(x, y1,..., yi) 2 () 9 8 For all j 1, . , i , yj q( x ). If i is odd, then Qi = . Otherwise Qi = . 2 f Pg j j ≤ j j 9 8 A language L Πi iff there is some relation R(x, y1,..., yi) P, polymomial q so that • 2 2 x L y1, y2 ...Qi yi R(x, y1,..., yi) 2 () 8 9 For all j 1, . , i , yj q( x ). If i is even, then Qi = . Otherwise Qi = . 2 f g j j ≤ j j 9 8 P Example 1.1. The decision problem "Is C a minimal circuit?" is in Π2 . Because to decide if C is a minimal circuit, we can decide whether C0, C0 C , x(C(x) = C0(x)) 8 j j ≤ j j 9 6 2 CSE 200 Winter 2016 is true. Next we prove the oracle definition and the quantifier definition are equivalent. Quantifier definition = oracle definition ) P Claim 1. If L can be written with i quantifiers beginning with , then L Σi . 9 2 Proof. By induction. P Base case: for i = 1, if x L y1R(x, y1), then L NP = Σ1 . 2 () 9 P2 Inductive step: Assume any i-quantifier language Σi . 2 Assume x L. y1( y2 y3 ... ) R(x1, y1,... yi+1). 2 9 8 9 Define language L0 such that (x, y1) L0 y2 y3 ... R(x, y1,..., yi+1). 2 () 8 9 Let L be the complement of L0. Thus (x, y1) L y2 y3 ... R(x, y1,..., yi+1). 0 2 0 () 9 8 x L y1(x, y1) = L . 2 () 9 2 0 For a witness: y , we can ask the oracle for L : “Is x, y L ?” If the oracle says no, then 1 0 ( 1) 0 accept. If yes, then reject. 2 By induction hypothesis, the language L is in ΣP. Thus, x L iff there is a witness y 0 i 1 P L P 2 2 verifiable in Σi . Thus L NP 0 Σi 1. 2 ⊆ + P Claim 2. If L can be written with i quantifiers beginning with , then L Πi . 8 2 It can be proved symmetrically. Oracle definition = quantifier definition The proof is based on [4)]. Proof. By induction. P Base case: for i = 1, we already proved L Σ1 = NP iff x L y1R(x, y1), where 2 2 () 9 y1 = poly( x ) and R P. j j j j 2 P Inductive step: Assume every L0 Σi can be written with i-quantifier. Let ML be the oracle machine for L. 2 ML (x) = 1 y1, y2 ...Qi yi R0(x, y1,..., yi) = 0. 0 () 9 8 Negating both sides, ML (x) = 0 y1, y2 ...Qi yi R0(x, y1,..., yi) = 0. 0 () 8 9 Let L ΣP . Assume M is a TM in NP that makes m queries to oracle machine M which is i+1 0 P 2 in Σi . Let y be the witness string of M, and let (q1, a1),... (qm, am) be the m queries and their 3 CSE 200 Winter 2016 answers. Then, an input x in L iff M(x) = 1 (q1,..., qm, a1,..., am, y) () 9 [(M 0(q1) = a1) (M 0(qm) = am) R(x, a1,..., am, y)]. (1) ^ · · · ^ ^ P If aj = 1, then M 0(qj) = 1, again by induction assumption, M 0 is in Σi , so yj,1 yj,2 ...Qi yj,i R0(qj, y1, y2,..., yi) = 1. 9 8 If aj = 0, then M 0(qj) = 0, by induction assumption, (note that this time we index the i quan- tifiers from 2 to i + 1) y0j,2 y0j,3 ...Q0i 1 y0j,i 1 R0(qj, y20 , y30 ,..., yi0 1) = 0. 8 9 + + + By merging yj,2 with y0j,2, yj,3 with y0j,3, ... up to Qi yj,i with Q0i y0j,i, the two formulas above become8 8 9 9 yj,1 (yj,2, y0j,2) (yj,3, y0j,3) ...Qi(yj,i, y0j,i)Qi+1 yi0 1 9 8 9 + [(aj = 1 R0(qj, y1, y2,..., yi) = 1) (aj = 0 R0(qj, y20 , y30 ,..., yi0 1) = 0)]. (2) ^ _ ^ + Combining formulas (1) and (2) and taking each and quantifier over all j 1, . , m , we get 8 9 2 f g M(x) = 1 (q1,..., qm, a1,..., am, y, y1,1,..., ym,1) () 9 (y1,2,..., ym,2, y1,20 ,..., ym0 ,2) 8 (y1,3,..., ym,3, y1,30 ,..., ym0 ,3) 9 ... Qi(y1,i,..., ym,i, y1,0 i,..., ym0 ,i) Q y ,..., y i+1( 1,0 i+1 m,i+1) m ^ a 1 R q , y , y ,..., y 1 a 0 R q , y , y ,..., y 0 [( j = 0( j 1 2 i) = ) ( j = 0( j 20 30 i0+1) = )] j=1 ^ _ ^ R(x, a1,..., am, y). ^ 2 More consequences of P = NP 2.1 Learning See notes from previous classes. 4 CSE 200 Winter 2016 2.2 Approximate counting The class #P is analogous to NP. Instead of asking “are there any witnesses (or accepting paths of NTM)?”, #P problems ask “how many witnesses (or accepting paths)?”. Definition 5 (#P). A language is in class #P if its objective is to compute f (x), where f is the number of polynomial length witnesses y satisfying R(x, y), and R is verifiable in polynomial time. NP #P in a straightforward way. ⊆ Toda’s theorem shows that any problem in PH has a polynomial-time Turing reduction to a counting problem. Thus #P is more powerful then NP. Theorem 6 (Toda’s Theorem). PH P#P. ⊆ Corollary 7. If #P ΣP, then PH ΣP . = i = i+1 ΣP Stockmeyer’s Theorem: for any function F #P, we can approximate F in P 2 . (i.e. ap- proximate algorithm A satisfies A(x)=(1 + ε) F2(x) A(x)(1 + ε)). Thus if P = NP, we can do approximate counting in polynomial time. ≤ ≤ References [1] Polynomial hierarchy - wikipedia. https://en.wikipedia.org/wiki/Polynomial_ hierarchy. [2] Sharp-p - wikipedia. https://en.wikipedia.org/wiki/Sharp-P. [3] Toda’s theorem - wikipedia. https://en.wikipedia.org/wiki/Toda%27s_theorem. [4] Jonathan Katz. Notes on complexity theory. http://www.cs.umd.edu/~jkatz/ complexity/f11/lecture9.pdf. 5.
Recommended publications
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • The Polynomial Hierarchy
    ij 'I '""T', :J[_ ';(" THE POLYNOMIAL HIERARCHY Although the complexity classes we shall study now are in one sense byproducts of our definition of NP, they have a remarkable life of their own. 17.1 OPTIMIZATION PROBLEMS Optimization problems have not been classified in a satisfactory way within the theory of P and NP; it is these problems that motivate the immediate extensions of this theory beyond NP. Let us take the traveling salesman problem as our working example. In the problem TSP we are given the distance matrix of a set of cities; we want to find the shortest tour of the cities. We have studied the complexity of the TSP within the framework of P and NP only indirectly: We defined the decision version TSP (D), and proved it NP-complete (corollary to Theorem 9.7). For the purpose of understanding better the complexity of the traveling salesman problem, we now introduce two more variants. EXACT TSP: Given a distance matrix and an integer B, is the length of the shortest tour equal to B? Also, TSP COST: Given a distance matrix, compute the length of the shortest tour. The four variants can be ordered in "increasing complexity" as follows: TSP (D); EXACTTSP; TSP COST; TSP. Each problem in this progression can be reduced to the next. For the last three problems this is trivial; for the first two one has to notice that the reduction in 411 j ;1 17.1 Optimization Problems 413 I 412 Chapter 17: THE POLYNOMIALHIERARCHY the corollary to Theorem 9.7 proving that TSP (D) is NP-complete can be used with DP.
    [Show full text]
  • The Polynomial Hierarchy and Alternations
    Chapter 5 The Polynomial Hierarchy and Alternations “..synthesizing circuits is exceedingly difficulty. It is even more difficult to show that a circuit found in this way is the most economical one to realize a function. The difficulty springs from the large number of essentially different networks available.” Claude Shannon 1949 This chapter discusses the polynomial hierarchy, a generalization of P, NP and coNP that tends to crop up in many complexity theoretic inves- tigations (including several chapters of this book). We will provide three equivalent definitions for the polynomial hierarchy, using quantified pred- icates, alternating Turing machines, and oracle TMs (a fourth definition, using uniform families of circuits, will be given in Chapter 6). We also use the hierarchy to show that solving the SAT problem requires either linear space or super-linear time. p p 5.1 The classes Σ2 and Π2 To understand the need for going beyond nondeterminism, let’s recall an NP problem, INDSET, for which we do have a short certificate of membership: INDSET = {hG, ki : graph G has an independent set of size ≥ k} . Consider a slight modification to the above problem, namely, determin- ing the largest independent set in a graph (phrased as a decision problem): EXACT INDSET = {hG, ki : the largest independent set in G has size exactly k} . Web draft 2006-09-28 18:09 95 Complexity Theory: A Modern Approach. c 2006 Sanjeev Arora and Boaz Barak. DRAFTReferences and attributions are still incomplete. P P 96 5.1. THE CLASSES Σ2 AND Π2 Now there seems to be no short certificate for membership: hG, ki ∈ EXACT INDSET iff there exists an independent set of size k in G and every other independent set has size at most k.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • NP-Complete Problems and Physical Reality
    NP-complete Problems and Physical Reality Scott Aaronson∗ Abstract Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adia- batic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and “anthropic computing.” The section on soap bubbles even includes some “experimental” re- sults. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics. 1 Introduction “Let a computer smear—with the right kind of quantum randomness—and you create, in effect, a ‘parallel’ machine with an astronomical number of processors . All you have to do is be sure that when you collapse the system, you choose the version that happened to find the needle in the mathematical haystack.” —From Quarantine [31], a 1992 science-fiction novel by Greg Egan If I had to debate the science writer John Horgan’s claim that basic science is coming to an end [48], my argument would lean heavily on one fact: it has been only a decade since we learned that quantum computers could factor integers in polynomial time. In my (unbiased) opinion, the showdown that quantum computing has forced—between our deepest intuitions about computers on the one hand, and our best-confirmed theory of the physical world on the other—constitutes one of the most exciting scientific dramas of our time.
    [Show full text]
  • Complexes of Technetium with Pyrophosphate, Etidronate, and Medronate
    Complexes of Technetium with Pyrophosphate, Etidronate, and Medronate Charles D. Russell and Anna G. Cash Veterans Administration Medical Center and University of Alabama Medical Center, Birmingham, Alabama The reduction of [9Tc ]pertechnetate was studied as a function ofpH in complexing media of pyrophosphate, methylene dipkosphonate (MDP), and ethane-1, hydroxy-1, and l-diphosphonate (HEDP). Tast (sampled d-c) and normal-pulse polarography were used to study the reduction of pertechnetate, and normal-pulse polarography (sweeping in the anodic direction) to study the reoxidation of the products. Below pH 6 TcOi *as reduced to Tc(IH), which could be reoxidized to Tc(IV). Above pH 10, TcO," was reduced in two steps to Tc(V) and Tc(IV), each of which could be reoxidized to Tc(),~. Between pH 6 and 10 the results differed according to the ligand present. In pyrophosphate and MDP, TcOA ~ was reduced in two steps to Tc(IV) and Tc(IIl); Tc(IIl) could be reoxidized in two steps to Tc(IV) and TcO 4~. In HEDP, on the other hand, TcO, ~ was reduced in two steps to Tc(V) and Tc(III), and could be reoxidized to Tc(IV) and TcO.,". Additional waves were observed; they apparently led to unstable products. J Nucl Med 20: 532-537, 1979 The practical importance of the diphosphonate complexes of technetium with all three ligands in and pyrophosphate complexes of technetium lies in clinical use. Stable oxidation states were positively their medical use for radionuclide bone scanning. identified for a wide range of pH, and unstable Their structures unknown, they are prepared by states were characterized by their polarographic reducing tracer (nanomolar) amounts of [99nTc] per­ half-wave potentials.
    [Show full text]
  • A Taxonomy of Proof Systems*
    ATaxonomy of Pro of Systems Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel September Abstract Several alternative formulations of the concept of an ecient pro of system are nowadays co existing in our eld These systems include the classical formulation of NP interactive proof systems giving rise to the class IP computational lysound proof systemsand probabilistical ly checkable proofs PCP which are closely related to multiprover interactive proofs MI P Although these notions are sometimes intro duced using the same generic phrases they are actually very dierent in motivation applications and expressivepower The main ob jectiveof this essay is to try to clarify these dierences This is a revised version of a survey which has app eared in Complexity Theory Retrospective II LA Hemaspaan dra and A Selman eds Intro duction In recentyears alternativeformulations of the concept of an ecient pro of system have received much attention Not only have talks and pap ers concerning these systems o o ded the eld of theoretical computer science but also some of these developments havereached the nontheory community and a few were even rep orted in nonscientic forums suchastheNew York Times Thus I am quite sure that the reader has heard of phrases suchasinteractive pro ofs and results suchasIP PSPACE By no means am I suggesting that the interest in the various formulations of ecientproof systems has gone out of prop ortion Certainly the notion of an ecient pro of system is central
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 5 The Polynomial Hierarchy and Alternations “..synthesizing circuits is exceedingly difficulty. It is even more difficult to show that a circuit found in this way is the most economical one to realize a function. The difficulty springs from the large number of essentially different networks available.” Claude Shannon 1949 This chapter discusses the polynomial hierarchy, a generalization of P, NP and coNP that tends to crop up in many complexity theoretic investigations (including several chapters of this book). We will provide three equivalent definitions for the polynomial hierarchy, using quantified predicates, alternating Turing machines, and oracle TMs (a fourth definition, using uniform families of circuits, will be given in Chapter 6). We also use the hierarchy to show that solving the SAT problem requires either linear space or super-linear time. p p 5.1 The classes Σ2 and Π2 To understand the need for going beyond nondeterminism, let’s recall an NP problem, INDSET, for which we do have a short certificate of membership: INDSET = {hG, ki : graph G has an independent set of size ≥ k} .
    [Show full text]
  • Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
    Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.
    [Show full text]
  • Total Functions in the Polynomial Hierarchy 11
    Electronic Colloquium on Computational Complexity, Report No. 153 (2020) TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY ROBERT KLEINBERG∗, DANIEL MITROPOLSKYy, AND CHRISTOS PAPADIMITRIOUy Abstract. We identify several genres of search problems beyond NP for which existence of solutions is guaranteed. One class that seems especially rich in such problems is PEPP (for “polynomial empty pigeonhole principle”), which includes problems related to existence theorems proved through the union bound, such as finding a bit string that is far from all codewords, finding an explicit rigid matrix, as well as a problem we call Complexity, capturing Complexity Theory’s quest. When the union bound is generous, in that solutions constitute at least a polynomial fraction of the domain, we have a family of seemingly weaker classes α-PEPP, which are inside FPNPjpoly. Higher in the hierarchy, we identify the constructive version of the Sauer- Shelah lemma and the appropriate generalization of PPP that contains it. The resulting total function hierarchy turns out to be more stable than the polynomial hierarchy: it is known that, under oracles, total functions within FNP may be easy, but total functions a level higher may still be harder than FPNP. 1. Introduction The complexity of total functions has emerged over the past three decades as an intriguing and productive branch of Complexity Theory. Subclasses of TFNP, the set of all total functions in FNP, have been defined and studied: PLS, PPP, PPA, PPAD, PPADS, and CLS. These classes are replete with natural problems, several of which turned out to be complete for the corresponding class, see e.g.
    [Show full text]