Genomic Profiling Identifies Association of IDH1/IDH2 Mutation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download (Pdf)
Invivoscribe's wholly-owned Laboratories for Personalized Molecular LabPMM LLC Medicine® (LabPMM) is a network of international reference laboratories that provide the medical and pharmaceutical communities with worldwide Located in San Diego, California, USA, it holds access to harmonized and standardized clinical testing services. We view the following accreditations and certifications: internationally reproducible and concordant testing as a requirement for ISO 15189, CAP, and CLIA, and is licensed to provide diagnostic consistent stratification of patients for enrollment in clinical trials, and the laboratory services in the states of California, Florida, foundation for establishing optimized treatment schedules linked to patient’s Maryland, New York, Pennsylvania, and Rhode Island. individual profile. LabPMM provides reliable patient stratification at diagnosis LabPMM GmbH and monitoring, throughout the entire course of treatment in support of Personalized Molecular Medicine® and Personalized Based in Martinsried (Munich), Germany. It is an ISO 15189 Molecular Diagnostics®. accredited international reference laboratory. CLIA/CAP accreditation is planned. Invivoscribe currently operates four clinical laboratories to serve partners in the USA (San Diego, CA), Europe (Munich, Germany), and Asia (Tokyo, Japan and Shanghai, China). These laboratories use the same critical LabPMM 合同会社 reagents and software which are developed consistently with ISO Located in Kawasaki (Tokyo), Japan and a licensed clinical lab. 13485 design control. Our cGMP reagents, rigorous standards for assay development & validation, and testing performed consistently under ISO 15189 requirements help ensure LabPMM generates standardized and concordant test results worldwide. Invivoscribe Diagnostic Technologies (Shanghai) Co., Ltd. LabPMM is an international network of PersonalMed Laboratories® focused on molecular oncology biomarker studies. Located in Shangai, China. -
IDH2 Mutations—Co-Opting Cellular Metabolism for Malignant Transformation Eytan M
Published OnlineFirst November 9, 2015; DOI: 10.1158/1078-0432.CCR-15-0362 Molecular Pathways Clinical Cancer Research Molecular Pathways: IDH2 Mutations—Co-opting Cellular Metabolism for Malignant Transformation Eytan M. Stein Abstract Mutations in mitochondrial IDH2, one of the three isoforms function that catalyzes the conversion of alpha-ketoglutarate to of IDH, were discovered in patients with gliomas in 2009 and beta-hydroxyglutarate (2-HG). Supranormal levels of 2-HG subsequently described in acute myelogenous leukemia (AML), lead to hypermethylation of epigenetic targets and a subse- angioimmunoblastic T-cell lymphoma, chondrosarcoma, and quent block in cellular differentiation. AG-221, a small-mole- intrahepatic chloangiocarcinoma. The effects of mutations in cule inhibitor of mutant IDH2, is being explored in a phase I IDH2 on cellular metabolism, the epigenetic state of mutated clinical trial for the treatment of AML, other myeloid malig- cells, and cellular differentiation have been elucidated in vitro nancies, solid tumors, and gliomas. Clin Cancer Res; 22(1); 16–19. and in vivo.MutationsinIDH2 lead to an enzymatic gain of Ó2015 AACR. Background Interestingly, in a screen of 398 patients with AML, TET2 and IDH2 mutations were mutually exclusive, suggesting that these Isocitrate dehydrogenase (IDH) catalyzes the conversion of two mutations have a similar function. Wild-type TET2 demethy- isocitrate to alpha-ketoglutarate. IDH occurs in three isoforms, lates DNA, and mutations in TET2 lead to increases in 5-methyl- IDH1, located in the cytoplasm, IDH2 located in the mitochon- cytosine similar to those seen in patients with IDH mutations. It dria, and IDH3, which functions as part of the tricarboxylic acid has been suggested that elevated levels of 2-HG caused by mutant cycle. -
Advances in the Pathogenesis and Possible Treatments for Multiple Hereditary Exostoses from the 2016 International MHE Conference
Connective Tissue Research ISSN: 0300-8207 (Print) 1607-8438 (Online) Journal homepage: https://www.tandfonline.com/loi/icts20 Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko To cite this article: Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko (2018) Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference, Connective Tissue Research, 59:1, 85-98, DOI: 10.1080/03008207.2017.1394295 To link to this article: https://doi.org/10.1080/03008207.2017.1394295 Published online: 03 Nov 2017. Submit your article to this journal Article views: 323 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=icts20 CONNECTIVE TISSUE RESEARCH 2018, VOL. 59, NO. 1, 85–98 https://doi.org/10.1080/03008207.2017.1394295 PROCEEDINGS Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phana, Maurizio Pacificib, and Jeffrey D. Eskoa aDepartment of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; bTranslational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA ABSTRACT KEYWORDS Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 Multiple hereditary children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochon- exostoses; multiple dromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop osteochondromas; EXT1; adjacent to the growth plates of skeletal elements in young patients. -
Exostoses, Enchondromatosis and Metachondromatosis; Diagnosis and Management
Acta Orthop. Belg., 2016, 82, 102-105 ORIGINAL STUDY Exostoses, enchondromatosis and metachondromatosis; diagnosis and management John MCFARLANE, Tim KNIGHT, Anubha SINHA, Trevor COLE, Nigel KIELY, Rob FREEMAN From the Department of Orthopaedics, Robert Jones Agnes Hunt Hospital, Oswestry, UK We describe a 5 years old girl who presented to the region of long bones and are composed of a carti- multidisciplinary skeletal dysplasia clinic following lage lump outside the bone which may be peduncu- excision of two bony lumps from her fingers. Based on lated or sessile, the knee is the most common clinical examination, radiolographs and histological site (1,10). An isolated exostosis is a common inci- results an initial diagnosis of hereditary multiple dental finding rarely requiring treatment. Disorders exostosis (HME) was made. Four years later she developed further lumps which had the radiological associated with exostoses include HME, Langer- appearance of enchondromas. The appearance of Giedion syndrome, Gardner syndrome and meta- both exostoses and enchondromas suggested a possi- chondromatosis. ble diagnosis of metachondromatosis. Genetic testing Enchondroma are the second most common be- revealed a splice site mutation at the end of exon 11 on nign bone tumour characterised by the formation of the PTPN11 gene, confirming the diagnosis of meta- hyaline cartilage in the medulla of a bone. It occurs chondromatosis. While both single or multiple exosto- most frequently in the hand (60%) and then the feet. ses and enchondromas occur relatively commonly on The typical radiological features are of a well- their own, the appearance of multiple exostoses and defined lucent defect with endosteal scalloping and enchondromas together is rare and should raise the differential diagnosis of metachondromatosis. -
Src-Family Kinases Impact Prognosis and Targeted Therapy in Flt3-ITD+ Acute Myeloid Leukemia
Src-Family Kinases Impact Prognosis and Targeted Therapy in Flt3-ITD+ Acute Myeloid Leukemia Title Page by Ravi K. Patel Bachelor of Science, University of Minnesota, 2013 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Commi ttee Membership Pa UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE Commi ttee Membership Page This dissertation was presented by Ravi K. Patel It was defended on May 31, 2019 and approved by Qiming (Jane) Wang, Associate Professor Pharmacology and Chemical Biology Vaughn S. Cooper, Professor of Microbiology and Molecular Genetics Adrian Lee, Professor of Pharmacology and Chemical Biology Laura Stabile, Research Associate Professor of Pharmacology and Chemical Biology Thomas E. Smithgall, Dissertation Director, Professor and Chair of Microbiology and Molecular Genetics ii Copyright © by Ravi K. Patel 2019 iii Abstract Src-Family Kinases Play an Important Role in Flt3-ITD Acute Myeloid Leukemia Prognosis and Drug Efficacy Ravi K. Patel, PhD University of Pittsburgh, 2019 Abstract Acute myelogenous leukemia (AML) is a disease characterized by undifferentiated bone-marrow progenitor cells dominating the bone marrow. Currently the five-year survival rate for AML patients is 27.4 percent. Meanwhile the standard of care for most AML patients has not changed for nearly 50 years. We now know that AML is a genetically heterogeneous disease and therefore it is unlikely that all AML patients will respond to therapy the same way. Upregulation of protein-tyrosine kinase signaling pathways is one common feature of some AML tumors, offering opportunities for targeted therapy. -
SKELETAL DYSPLASIA Dr Vasu Pai
SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1. -
Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen
Author Manuscript Published OnlineFirst on May 8, 2019; DOI: 10.1158/1541-7786.MCR-19-0020 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Reprogramming of isocitrate dehydrogenases expression and activity by the androgen 2 receptor in prostate cancer 3 4 Kevin Gonthier1,2, Raghavendra Tejo Karthik Poluri1,2, Cindy Weidmann1, Maude Tadros1, and 5 Étienne Audet-Walsh1,2,3 6 7 1 Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - 8 Université Laval, Québec City, Canada 9 2 Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, 10 Canada 11 3 Centre de recherche sur le cancer de l’Université Laval, Québec City, Canada 12 13 Keywords: steroid; metabolism; glioma; nuclear receptor; castration-resistant prostate cancer, 14 IDH1, oncometabolism 15 16 Abbreviated title: Reprogramming of IDH activity by AR in PCa 17 18 Corresponding Author: Étienne Audet-Walsh, Centre de recherche du CHU de Québec, 2705 19 Boulevard Laurier, room R-4714, Québec City, QC, Canada, G1V 4G2 20 Phone: 1-418-525-4444 ext. 48678 ; e-mail : [email protected] 21 22 Disclosure statement: the authors declare no potential conflicts of interest. 1 Downloaded from mcr.aacrjournals.org on September 24, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 8, 2019; DOI: 10.1158/1541-7786.MCR-19-0020 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 23 Abstract 24 Mutations of the isocitrate dehydrogenase genes IDH1 and IDH2, key enzymes involved in 25 citrate metabolism, are important oncogenic events in several cancer types, including in 1-3% of 26 all prostate cancer (PCa) cases. -
Potential Genotoxicity from Integration Sites in CLAD Dogs Treated Successfully with Gammaretroviral Vector-Mediated Gene Therapy
Gene Therapy (2008) 15, 1067–1071 & 2008 Nature Publishing Group All rights reserved 0969-7128/08 $30.00 www.nature.com/gt SHORT COMMUNICATION Potential genotoxicity from integration sites in CLAD dogs treated successfully with gammaretroviral vector-mediated gene therapy M Hai1,3, RL Adler1,3, TR Bauer Jr1,3, LM Tuschong1, Y-C Gu1,XWu2 and DD Hickstein1 1Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA and 2Laboratory of Molecular Technology, Scientific Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, Maryland, USA Integration site analysis was performed on six dogs with in hematopoietic stem cells. Integrations clustered around canine leukocyte adhesion deficiency (CLAD) that survived common insertion sites more frequently than random. greater than 1 year after infusion of autologous CD34+ bone Despite potential genotoxicity from RIS, to date there has marrow cells transduced with a gammaretroviral vector been no progression to oligoclonal hematopoiesis and no expressing canine CD18. A total of 387 retroviral insertion evidence that vector integration sites influenced cell survival sites (RIS) were identified in the peripheral blood leukocytes or proliferation. Continued follow-up in disease-specific from the six dogs at 1 year postinfusion. A total of 129 RIS animal models such as CLAD will be required to provide an were identified in CD3+ T-lymphocytes and 102 RIS in accurate estimate -
As a Potential Therapeutic Approach for AML Wittawat Chantkran 1,2,Ya-Chinghsieh1, Daniella Zheleva3,Sheelaghframe3, Helen Wheadon1 and Mhairi Copland 1
Chantkran et al. Cell Death Discovery (2021) 7:137 https://doi.org/10.1038/s41420-021-00496-y Cell Death Discovery ARTICLE Open Access Interrogation of novel CDK2/9 inhibitor fadraciclib (CYC065) as a potential therapeutic approach for AML Wittawat Chantkran 1,2,Ya-ChingHsieh1, Daniella Zheleva3,SheelaghFrame3, Helen Wheadon1 and Mhairi Copland 1 Abstract Over the last 50 years, there has been a steady improvement in the treatment outcome of acute myeloid leukemia (AML). However, median survival in the elderly is still poor due to intolerance to intensive chemotherapy and higher numbers of patients with adverse cytogenetics. Fadraciclib (CYC065), a novel cyclin-dependent kinase (CDK) 2/9 inhibitor, has preclinical efficacy in AML. In AML cell lines, myeloid cell leukemia 1 (MCL-1) was downregulated following treatment with fadraciclib, resulting in a rapid induction of apoptosis. In addition, RNA polymerase II (RNAPII)-driven transcription was suppressed, rendering a global gene suppression. Rapid induction of apoptosis was observed in primary AML cells after treatment with fadraciclib for 6–8 h. Twenty-four hours continuous treatment further increased efficacy of fadraciclib. Although preliminary results showed that AML cell lines harboring KMT2A rearrangement (KMT2A-r) are more sensitive to fadraciclib, we found that the drug can induce apoptosis and decrease MCL-1 expression in primary AML cells, regardless of KMT2A status. Importantly, the diversity of genetic mutations observed in primary AML patient samples was associated with variable response to fadraciclib, confirming the need for fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; patient strati cation to enable a more effective and personalized treatment approach. Synergistic activity was demonstrated when fadraciclib was combined with the BCL-2 inhibitor venetoclax, or the conventional chemotherapy agents, cytarabine, or azacitidine, with the combination of fadraciclib and azacitidine having the most favorable therapeutic window. -
Mouse Idh3a Mutations Cause Retinal Degeneration and Reduced Mitochondrial Function Amy S
© 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm036426. doi:10.1242/dmm.036426 RESEARCH ARTICLE Mouse Idh3a mutations cause retinal degeneration and reduced mitochondrial function Amy S. Findlay1, Roderick N. Carter2, Becky Starbuck3, Lisa McKie1, Klára Nováková1, Peter S. Budd1, Margaret A. Keighren1, Joseph A. Marsh1, Sally H. Cross1, Michelle M. Simon3, Paul K. Potter3, Nicholas M. Morton2 and Ian J. Jackson1,4,* ABSTRACT these diseases have a wide range of pathologies (Koopman et al., Isocitrate dehydrogenase (IDH) is an enzyme required for the 2012). Common to many of the diseases, however, are neurological production of α-ketoglutarate from isocitrate. IDH3 generates the or neuromuscular manifestations, including retinal disease. We have NADH used in the mitochondria for ATP production, and is a tetramer identified a missense mutation in the gene encoding a subunit of the made up of two α, one β and one γ subunit. Loss-of-function and tricarboxylic acid (TCA) cycle enzyme isocitrate dehydrogenase 3 missense mutations in both IDH3A and IDH3B have previously been (IDH3) as causing a retinal degeneration phenotype in mice. There implicated in families exhibiting retinal degeneration. Using mouse are three isocitrate dehydrogenase isozymes in mammals. IDH1 and models, we investigated the role of IDH3 in retinal disease and IDH2 are both homodimers that catalyse the decarboxylation of α mitochondrial function. We identified mice with late-onset retinal isocitrate to -ketoglutarate with the concomitant reduction of NADP degeneration in a screen of ageing mice carrying an ENU-induced to NADPH. IDH1 is cytoplasmic, whereas IDH2 is localised to the mutation, E229K, in Idh3a. -
S6K1 Mediates Oncogenic Glycolysis in Pten Deficient Leukemia
S6K1 mediates oncogenic glycolysis in Pten deficient leukemia A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in the Department of Cancer and Cell Biology of the College of Medicine by Preeti Tandon M.S. Bowling Green State University, 2004 ABSTRACT Hyperactive Akt signaling triggers glycolysis and apoptosis resistance in human cancer. Because sustained glycolysis is required for Akt dependent apoptosis resistance, we investigated the downstream signaling components that mediate Akt dependent increases in glycolysis in cells deficient for Pten, a negative regulator of the PI3K/Akt pathway. Genetic inactivation of the ribosomal protein S6 Kinase 1 (S6K1) in Pten-deficient cells prevented glycolysis, triggered Bax translocation and committed cells to apoptosis. Pharmacological S6K1 inhibition using a small molecule kinase inhibitor recapitulated the effects of genetically inactivating S6K1. Inactivation of S6K1 was associated with decreased expression of the pro-glycolytic HIF1α transcription factor. Restoring HIF1α expression was sufficient to restore both glycolysis and cell survival in S6K1-deficient cells. Conversely, inhibiting HIF1α expression in Pten deficient cells resulted in decreased glycolysis and cell survival, mimicking the loss of S6K1. In vivo, S6K1 deficiency delayed the development of lethal disease in a Pten deficient mouse model of leukemia. Thus, together the data suggest that S6K1 is a useful target for counteracting the metabolic program that supports apoptosis resistance in Pten-deficient cancers. iii iv ACKNOWLEDGEMENTS I would first and foremost like to thank Dr David Plas for being my mentor. Your guidance and advice have been instrumental in my progress and development as a scientist. -
Targeting the Phosphatidylinositol 3-Kinase Signaling Pathway in Acute
Integrative Cancer Science and Therapeutics Review Article ISSN: 2056-4546 Targeting the phosphatidylinositol 3-kinase signaling pathway in acute myeloid leukemia Ota Fuchs* Institute of Hematology and Blood Transfusion, Prague, Czech Republic Abstract The phosphatidylinositol-3-kinase-Akt (protein kinase B) - mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is often dysregulated in cancer, including hematological malignancies. Primary acute myeloid leukemia (AML) cell populations may include various subclones at the time of diagnosis. A relapse can occur due to regrowth of the originally dominating clone, a subclone detectable at the time of first diagnosis, or a new clone derived either from the original clone or from remaining preleukemic stem cells. Inhibition of mTOR signaling has in general modest growth-inhibitory effects in preclinical AML models and clinical trials. Therefore, combination of allosteric mTOR inhibitors with standard chemotherapy or targeted agents has a greater anti-leukemia efficacy. Dual mTORC1/2 inhibitors, and dual PI3K/mTOR inhibitors show greater activity in pre-clinical AML models. Understanding the role of mTOR signaling in leukemia stem cells is important because AML stem cells may become chemoresistant by displaying aberrant signaling molecules, modifying epigenetic mechanisms, and altering the components of the bone marrow microenvironment. The PI3K/Akt/mTOR signaling pathway is promising target in the treatment of hematological malignancies, including AML, especially by using of combinations of mTOR inhibitors with conventional cytotoxic agents. Introduction syndromes, chronic myelogenous leukemia (CML), multiple myeloma and lymphoid leukemias and lymphomas [42-54]. Below, I discuss the The mammalian target of rapamycin (mTOR) is a serine/threonine PI3K/Akt/mTOR pathway and its role in AML.