Exoplanet and Solar System Science with the James Webb Space Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Exoplanet and Solar System Science with the James Webb Space Telescope Exoplanet and Solar System Science with the James Webb Space Telescope Knicole Colón JWST Deputy Project Scientist for Exoplanet Science NASA Goddard Space Flight Center Exoplanets in Our Backyard 7 February 2020 1 Knicole Colón Exoplanets in Our Backyard - 7 February 2020 The Path to Exoplanet and Solar System Science with JWST Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Integration, Test, Launch, Commissioning and Science JWST sunshield deployment (Oct. 2019). Credit: NASA / Chris Gunn Ariane 5 ECA launch vehicle. Credit: Arianespace Slide courtesy Jane Rigby Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Some Remaining I&T Activities* •System (electrical) test •Vibration and acoustics tests •Observatory post-environmental deployments •Final system test •Observatory fold and stow for launch Slide courtesy Eric Smith NOTE: *Top-level tasks to go. Many activities https://www.nasa.gov/feature/goddard/2019/nasa-s-james-webb- are associated with each of these steps. space-telescope-clears-critical-sunshield-deployment-testing Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Webb is planned to ship from California to French Guiana in late 2020 Webb is set to launch on top of ESA’s Ariane 5 in 2021 from French Guiana It will undergo a month long 1.5 million km journey to its destination at the second Lagrange point National Aeronautics and Space Administration 6 Photo credit: ESA Commissioning JWST This is a complex, 6 month process. Credit: NASA / Jane Rigby Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Science Instruments The four different JWST instruments cover an array of imaging and spectroscopy observing modes from optical to infrared wavelengths (0.6 to 28.5 microns). 1. NIRCam 2. NIRISS 3. NIRSpec 4. MIRI Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Starting Science with JWST • Six months after launch, commissioning is planned to end, and science operations to begin. • The Cycle 1 schedule will intersperse observations from GO, GTO, ERS, and calibration programs. • Cycle 1 is just the beginning! JWST is planned to have a mission duration of 5-10 years. GO: General Observer GTO: Guaranteed Time Observer ERS: Director’s Discretionary Time Early Release Science Credit: Northrop Grumman Slide courtesy Jane Rigby Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Exoplanet and Solar System Science with JWST There are three flavors of planetary observations that will be conducted with the 6.5-meter infrared JWST to better understand the formation, composition, and evolution of planetary systems: 1. Imaging and spectroscopy of Solar System bodies 2. Direct imaging of exoplanets and disks 3. Time-series observations of transiting exoplanets Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Solar System Early Release Science and Guaranteed Time Observation Programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Solar System Program Early Release Science Program - Status as of June 2019 ERS Observations of the Jovian System as a Demonstration of JWST’s Capabilities for Solar System Science (28.9 hours) PI: Imke de Pater, Co-PI: Thierry Fouchet • the Jupiter system • Characterize Jupiter’s cloud layers, winds, composition, auroral activity, and temperature structure; • Produce maps of the atmosphere and surface of volcanically-active Io and icy satellite Ganymede to constrain their thermal and atmospheric structure, and search for plumes; and • Characterize the ring structure, and its sources, sinks and evolution. • MIRI: Medium Resolution Spectroscopy • NIRCam: Imaging • NIRISS: Aperture Masking Interferometry • NIRSpec: IFU Spectroscopy http://www.stsci.edu/jwst/observing-programs/approved-ers-programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 GTO Solar System Programs Guaranteed Time Observation Programs - Status as of June 2019 • Asteroids, Comets • Near Earth Objects (NEOs) • Mars, Jupiter (the Great Red Spot), Europa, Saturn (and its rings and small satellites), Enceladus, Titan, Uranus, Neptune • Trans-Neptunian Objects (TNOs) • Kuiper Belt Objects (KBOs) http://www.stsci.edu/jwst/observing-programs/approved-gto-programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 JWST Observations of Giant Planets Norwood et al. (2016) describes Webb’s opportunities in the near- and mid-infrared for Jupiter, Saturn, Uranus (Fig. 4), and Neptune. Webb can take advantage of methane’s wavelength- dependent absorption to engage in myriad investigations: • mapping vertical and horizontal cloud structures, including major storm systems and their evolution; • mapping of latitudinal methane variation on Uranus and Neptune to explore implications for global circulation; and • comparing near-simultaneous reflected-light and thermal imagery to study thermo-chemical processes behind different features. Other stratospheric investigations on these planets include mapping distributions of oxygen-bearing species such as CO2, CO, and H2O to constrain the influx rates and sources of external oxygen (sources may include infalling ring particles, dust from Figure 4. Uranus with Webb’s four MIRI medium-resolution IFUs. satellites, Kuiper Belt objects, or cometary impacts) Different optical elements and light paths for each channel result in fields of view that are offset and rotated with respect to each other. The IFUs will produce spectral maps with high efficiency Slide courtesy Heidi Hammel for Uranus, even at R=3000. Keck image courtesy L. Sromovsky. Knicole Colón Exoplanets in Our Backyard - 7 February 2020 NIRSpec Simulation of Europa’s Water Plumes Credit: NASA-GSFC/SVS, Hubble Space Telescope, Stefanie Milam, Geronimo Villanueva Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Direct Imaging of Exoplanets and Disks Early Release Science and Guaranteed Time Observation Programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Direct Imaging Modes http://www.stsci.edu/jwst/instrumentation/imaging-modes Direct Imaging with MIRI, NIRCam, NIRISS Coronagraphy with MIRI, NIRCam Aperture Masking Interferometry with NIRISS Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Direct Imaging Exoplanet Program Early Release Science Program - Status as of June 2019 High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST (51.7 hours) PI: Sasha Hinkley, Co-PIs: Andrew Skemer and Beth Biller • Generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; • Deliver science enabling products to empower a broad user base to develop successful future investigations; and • Carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. http://www.stsci.edu/jwst/observing-programs/approved-ers-programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Direct Imaging Exoplanet Program Early Release Science Program - Status as of June 2019 MIRI Coronagraphic Imaging HIP 65426 NIRCam Coronagraphic Imaging Chauvin et al. 2017 NIRISS Aperture Masking Interferometry MIRI Medium Resolution Spectroscopy VHS 1256 NIRCam Imaging Gauza et al. 2015 NIRSpec IFU Spectroscopy HR 4796 A MIRI Coronagraphic Imaging Milli et al. 2017 NIRCam Coronagraphic Imaging Knicole Colón Exoplanets in Our Backyard - 7 February 2020 GTO Direct Imaging Exoplanet Programs Guaranteed Time Observation Programs - Status as of June 2019 Targets: • Nearly 30 unique systems will be observed Observing Modes: • MIRI Coronagraphic Imaging • MIRI Imaging • MIRI Low Resolution Spectroscopy • MIRI Medium Resolution Spectroscopy • NIRCam Coronagraphic Imaging • NIRISS Aperture Masking Interferometry • NIRSpec Fixed Slit Spectroscopy • NIRSpec IFU Spectroscopy HR 8799; Credit: Wang/Marois http://www.stsci.edu/jwst/observing-programs/approved-gto-programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Transiting Exoplanet Early Release Science and Guaranteed Time Observation Programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 Time-Series Modes https://jwst-docs.stsci.edu/methods-and-roadmaps/jwst-time-series-observations https://exoctk.stsci.edu/pandexo/ Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Transiting Exoplanet Program Early Release Science Program - Status as of June 2019 The Transiting Exoplanet Community Early Release Science Program (80.4 hours) PI: Natalie Batalha, Co-PIs: Jacob L. Bean and Kevin B. Stevenson • Determine the spectrophotometric timeseries performance of the key instrument modes on timescales relevant to transits for a representative range of target star brightnesses. • Jump-start the process of developing remediation strategies for instrument-specific systematic noise. • Provide the community a comprehensive suite of transiting exoplanet data to fully demonstrate JWST’s scientific capabilities in this area. http://www.stsci.edu/jwst/observing-programs/approved-ers-programs Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Transiting Exoplanet Program Early Release Science Program - Status as of June 2019 Bean et al. 2018 Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Transiting Exoplanet Program Early Release Science Program - Status as of June 2019 WASP-79b simulated transmission spectrum from JWST Bean et al. 2018 Knicole Colón Exoplanets in Our Backyard - 7 February 2020 ERS Transiting Exoplanet Program Early Release Science Program
Recommended publications
  • Nircam Optical Analysis
    NIRCam Optical Analysis Yalan Mao, Lynn W. Huff and Zachary A. Granger Lockheed Martin Advanced Technology Center, 3251 Hanover St., Palo Alto, CA 94304 ABSTRACT The Near Infrared Camera (NIRCam) instrument for NASA’s James Webb Space Telescope (JWST) is one of the four science instruments to be installed into the Integrated Science Instrument Module (ISIM) on JWST. NIRCam’s requirements include operation at 37 Kelvin to produce high-resolution images in two wave bands encompassing the range from 0.6 microns to 5 microns. In addition, NIRCam is to be used as a metrology instrument during the JWST observatory commissioning on orbit, during the precise alignment of the observatory’s multiple-segment primary mirror. This paper will present the optical analyses performed in the development of the NIRCam optical system. The Compound Reflectance concept to specify coating on optics for ghost image reduction is introduced in this paper. Key words: NIRCam, JWST, Compound Reflectance, Optical analysis, ghost image 1. INTRODUCTION NIRCam is a science instrument that will make up part of the science instrument complement of the James Webb Space Telescope (JWST). The JWST will possess a large aperture of 6.5m with several times the collecting area of the Hubble Space Telescope. JWST will have a broadband IR capability that, from the vicinity of Lagrange 2 (nine hundred thousand km from earth), will allow a view into the distant history of galaxy formation. The instrument will be required to furnish high-quality infrared imaging performance while operating in a challenging cryogenic (32 - 37 Kelvin) space environment over a minimum 5-year (10 year goal) mission.
    [Show full text]
  • Status of the James Webb Space Telescope Integrated Science Instrument Module System
    The 2010 STScI Calibration Workshop Space Telescope Science Institute, 2010 Susana Deustua and Cristina Oliveira, eds. Status of the James Webb Space Telescope Integrated Science Instrument Module System Matthew A. Greenhouse*, Michael P. Drury, Jamie L. Dunn, Stuart D. Glazer, Ed Greville, Gregory Henegar, Eric L. Johnson, Ray Lundquist, John C. McCloskey, Raymond G. Ohl IV, Robert A. Rashford, and Mark F. Voyton Goddard Space Flight Center, Greenbelt, MD 20771 Abstract. The Integrated Science Instrument Module (ISIM) of the JamesWebbSpace Telescope (JWST) is discussed from a systems perspective with emphasis on devel- opment status and advanced technology aspects. The ISIM is one of three elements that comprise the JWST space vehicle and is the science instrument payload of the JWST. The major subsystems of this flight element and theirbuildstatusare described. 1. Introduction The James Webb Space Telescope (Figure 1) is under development by NASA for launch during 2014 with major contributions from the European and Canadian Space Agencies. The JWST mission is designed to enable a wide range of science investigations across four broad themes: (1) observation of the first luminous objects after the Big Bang, (2) the evolution of galaxies, (3) the birth of stars and planetary systems, and (4) the formation of planets and the origins of life [1],[2],[3]. Integrated Science Instrument Module (ISIM) is the science payload of the JWST [4],[5],[6]. Along with the telescope and spacecraft, the ISIM is one of three elements that comprise the JWST space vehicle. At 1.4 mT, it makes up approximately 20% of both the observatory mass and cost to launch.
    [Show full text]
  • Arxiv:1904.05358V1 [Astro-Ph.EP] 10 Apr 2019
    Draft version April 12, 2019 Typeset using LATEX default style in AASTeX62 The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10{100 AU Eric L. Nielsen,1 Robert J. De Rosa,1 Bruce Macintosh,1 Jason J. Wang,2, 3, ∗ Jean-Baptiste Ruffio,1 Eugene Chiang,3 Mark S. Marley,4 Didier Saumon,5 Dmitry Savransky,6 S. Mark Ammons,7 Vanessa P. Bailey,8 Travis Barman,9 Celia´ Blain,10 Joanna Bulger,11 Jeffrey Chilcote,1, 12 Tara Cotten,13 Ian Czekala,3, 1, y Rene Doyon,14 Gaspard Duchene^ ,3, 15 Thomas M. Esposito,3 Daniel Fabrycky,16 Michael P. Fitzgerald,17 Katherine B. Follette,18 Jonathan J. Fortney,19 Benjamin L. Gerard,20, 10 Stephen J. Goodsell,21 James R. Graham,3 Alexandra Z. Greenbaum,22 Pascale Hibon,23 Sasha Hinkley,24 Lea A. Hirsch,1 Justin Hom,25 Li-Wei Hung,26 Rebekah Ilene Dawson,27 Patrick Ingraham,28 Paul Kalas,3, 29 Quinn Konopacky,30 James E. Larkin,17 Eve J. Lee,31 Jonathan W. Lin,3 Jer´ ome^ Maire,30 Franck Marchis,29 Christian Marois,10, 20 Stanimir Metchev,32, 33 Maxwell A. Millar-Blanchaer,8, 34 Katie M. Morzinski,35 Rebecca Oppenheimer,36 David Palmer,7 Jennifer Patience,25 Marshall Perrin,37 Lisa Poyneer,7 Laurent Pueyo,37 Roman R. Rafikov,38 Abhijith Rajan,37 Julien Rameau,14 Fredrik T. Rantakyro¨,39 Bin Ren,40 Adam C. Schneider,25 Anand Sivaramakrishnan,37 Inseok Song,13 Remi Soummer,37 Melisa Tallis,1 Sandrine Thomas,28 Kimberly Ward-Duong,25 and Schuyler Wolff41 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Astronomy, University of California, Berkeley, CA 94720, USA 4NASA Ames Research Center, Mountain View, CA 94035, USA 5Los Alamos National Laboratory, P.O.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Nircam: Development and Testing of the JWST Near-Infrared Camera
    NIRCam: Development and Testing of the JWST Near-Infrared Camera Thomas Greenea, Charles Beichmanb, Michael Gully-Santiagoc,DanielJaffec, Douglas Kellyd, John Kriste,MarciaRieked, and Eric H. Smithf aNASA’s Ames Research Center, MS 245-6, Moffett Field, CA, USA; bNExScI, Caltech 100-22, Pasadena, CA, USA; cUniversity of Texas Department of Astronomy, Austin, TX, USA; dSteward Observatory, University of Arizona, Tucson, AZ, USA; eJet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, USA; fLockheed Martin Advanced Technology Ctr., 3251 Hanover St., Palo Alto, CA USA ABSTRACT The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 − 5 μm wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model’s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 − 2.3 μm) and long (2.4 − 5.0 μm) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).
    [Show full text]
  • The Mid-Infrared Instrument for JWST I
    When there is a discrepancy between the information in this technical report and information in JDox, assume JDox is correct. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction G. H. Rieke1,G.S.Wright2,T.B¨oker3,J.Bouwman4, L. Colina5, Alistair Glasse2,K.D. Gordon6,7,T.P.Greene8,ManuelG¨udel9,10, Th. Henning4,K.Justtanont11,P.-O. Lagage12,M.E.Meixner6,13, H.-U. Nørgaard-Nielsen14,T.P.Ray15,M.E.Ressler16,E.F. van Dishoeck17,&C.Waelkens18. –2– ABSTRACT MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope (JWST)) operates from 5 to 28.5 μm and combines over this range: 1.) unprece- dented sensitivity levels; 2.) sub-arcsec angular resolution; 3.) freedom from atmospheric interference; 4.) the inherent stability of observing in space; and 1Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 2UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3European Space Agency, c/o STScI, 3700 San Martin Drive, Batimore, MD 21218, USA 4Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 5Centro de Astrobiolog´ıa (INTA-CSIC), Dpto Astrof´ısica, Carretera de Ajalvir, km 4, 28850 Torrej´on de Ardoz, Madrid, Spain 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium 8Ames Research Center, M.S. 245-6, Moffett Field, CA 94035, USA 9Dept. of Astrophysics, Univ. of Vienna, T¨urkenschanzstr 17, A-1180 Vienna, Austria 10ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Str. 27, CH-8093 Zurich, Switzerland 11Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden 12Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Universit´e Paris Diderot, F-91191 Gif-sur- Yvette, France 13The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N.
    [Show full text]
  • James Webb Space Telescope Is Expected to Have As Profound and Far-Reaching an Impact on Astrophysics As Did Its Famous Predecessor
    JWST Peter Jakobsen & Peter Jensen Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands nspired by the success of the Hubble Space Telescope, NASA, ESA and the Canadian I Space Agency have collaborated since 1996 on the design and construction of a scientifically worthy successor. Due to be launched from Kourou in 2013 on an Ariane-5 rocket, the James Webb Space Telescope is expected to have as profound and far-reaching an impact on astrophysics as did its famous predecessor. Introduction Astronomers cannot conduct experi- ments on the Universe, instead they must patiently observe the night sky as they find it, teasing out its secrets only by collecting and analysing the light received from celestial bodies. Since the time of Galileo, the foremost tool of astronomy has been the telescope, feeding first the human eye, and later increasingly sensitive and sophisticated instruments designed to record and dissect the captured light. With the coming of the Space Age, astronomers soon began sending their telescopes and instrumentation into orbit, to operate above the constraining window of Earth’s atmosphere. One of the most successful astronomical esa bulletin 133 - february 2008 33 Science Who was James Webb? James E. Webb (1906-92) was NASA’s second administrator. Appointed by President John F. Kennedy in 1961, Webb organised the fledgling space agency and oversaw the development of the Apollo programme until his retirement a few months before Apollo 11 successfully landed on the Moon. Although an educator and lawyer by training, with a long career in public service and industry, Webb can rightfully be considered the father of modern space science.
    [Show full text]
  • Astrophysical Studies of Extrasolar Planetary Systems Using Infrared Interferometric Techniques Olivier Absil
    Astrophysical studies of extrasolar planetary systems using infrared interferometric techniques Olivier Absil To cite this version: Olivier Absil. Astrophysical studies of extrasolar planetary systems using infrared interferometric techniques. Astrophysics [astro-ph]. Université de Liège, 2006. English. tel-00124720 HAL Id: tel-00124720 https://tel.archives-ouvertes.fr/tel-00124720 Submitted on 15 Jan 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Facult´edes Sciences D´epartement d’Astrophysique, G´eophysique et Oc´eanographie Astrophysical studies of extrasolar planetary systems using infrared interferometric techniques THESE` pr´esent´eepour l’obtention du diplˆomede Docteur en Sciences par Olivier Absil Soutenue publiquement le 17 mars 2006 devant le Jury compos´ede : Pr´esident: Pr. Jean-Pierre Swings Directeur de th`ese: Pr. Jean Surdej Examinateurs : Dr. Vincent Coude´ du Foresto Dr. Philippe Gondoin Pr. Jacques Henrard Pr. Claude Jamar Dr. Fabien Malbet Institut d’Astrophysique et de G´eophysique de Li`ege Mis en page avec la classe thloria. i Acknowledgments First and foremost, I want to express my deepest gratitude to my advisor, Professor Jean Surdej. I am forever indebted to him for striking my interest in interferometry back in my undergraduate student years; for introducing me to the world of scientific research and fostering so many international collaborations; for helping me put this work in perspective when I needed it most; and for guiding my steps, from the supervision of diploma thesis to the conclusion of my PhD studies.
    [Show full text]
  • Dynamical Models to Explain Observations with SPHERE in Planetary Systems with Double Debris Belts? C
    A&A 611, A43 (2018) Astronomy DOI: 10.1051/0004-6361/201731426 & c ESO 2018 Astrophysics Dynamical models to explain observations with SPHERE in planetary systems with double debris belts? C. Lazzoni1; 2, S. Desidera1, F. Marzari2; 1, A. Boccaletti3, M. Langlois4; 5, D. Mesa1; 6, R. Gratton1, Q. Kral7, N. Pawellek8; 9; 10, J. Olofsson11; 10, M. Bonnefoy12, G. Chauvin12, A. M. Lagrange12, A. Vigan5, E. Sissa1, J. Antichi13; 1, H. Avenhaus10; 14; 15, A. Baruffolo1, J. L. Baudino3; 16, A. Bazzon14, J. L. Beuzit12, B. Biller10; 17, M. Bonavita1; 17, W. Brandner10, P. Bruno18, E. Buenzli14, F. Cantalloube12, E. Cascone19, A. Cheetham20, R. U. Claudi1, M. Cudel12, S. Daemgen14, V. De Caprio19, P. Delorme12, D. Fantinel1, G. Farisato1, M. Feldt10, R. Galicher3, C. Ginski21, J. Girard12, E. Giro1, M. Janson10; 22, J. Hagelberg12, T. Henning10, S. Incorvaia23, M. Kasper12; 9, T. Kopytova10; 24; 25, J. Lannier12, H. LeCoroller5, L. Lessio1, R. Ligi5, A. L. Maire10, F. Ménard12, M. Meyer14; 26, J. Milli27, D. Mouillet12, S. Peretti20, C. Perrot3, D. Rouan3, M. Samland10, B. Salasnich1, G. Salter5, T. Schmidt3, S. Scuderi18, E. Sezestre12, M. Turatto1, S. Udry20, F. Wildi20, and A. Zurlo5; 28 (Affiliations can be found after the references) Received 23 June 2017 / Accepted 6 October 2017 ABSTRACT Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope.
    [Show full text]
  • The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction
    The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction G. H. Rieke1,G.S.Wright2,T.B¨oker3,J.Bouwman4, L. Colina5, Alistair Glasse2,K.D. Gordon6,7,T.P.Greene8,ManuelG¨udel9,10, Th. Henning4,K.Justtanont11,P.-O. Lagage12,M.E.Meixner6,13, H.-U. Nørgaard-Nielsen14,T.P.Ray15,M.E.Ressler16,E.F. van Dishoeck17,&C.Waelkens18. –2– ABSTRACT MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope (JWST)) operates from 5 to 28.5 μm and combines over this range: 1.) unprece- dented sensitivity levels; 2.) sub-arcsec angular resolution; 3.) freedom from atmospheric interference; 4.) the inherent stability of observing in space; and 1Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 2UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3European Space Agency, c/o STScI, 3700 San Martin Drive, Batimore, MD 21218, USA 4Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 5Centro de Astrobiolog´ıa (INTA-CSIC), Dpto Astrof´ısica, Carretera de Ajalvir, km 4, 28850 Torrej´on de Ardoz, Madrid, Spain 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium 8Ames Research Center, M.S. 245-6, Moffett Field, CA 94035, USA 9Dept. of Astrophysics, Univ. of Vienna, T¨urkenschanzstr 17, A-1180 Vienna, Austria 10ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Str. 27, CH-8093 Zurich, Switzerland 11Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden 12Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Universit´e Paris Diderot, F-91191 Gif-sur- Yvette, France 13The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N.
    [Show full text]
  • Worlds Apart - Finding Exoplanets
    Worlds Apart - Finding Exoplanets Illustrated Video Credit: NASA, JPL-Caltech, T. Pyle; Acknowledgement: djxatlanta Dr. Billy Teets Vanderbilt University Dyer Observatory Osher Lifelong Learning Institute Thursday, November 5, 2020 Outline • A bit of info and history about planet formation theory. • A discussion of the main exoplanet detection techniques including some of the missions and telescopes that are searching the skies. • A few examples of “notable” results. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. Retrograde Motion - Mars Image Credits: Tunc Tezel Retrograde Motion as Explained by Ptolemy To explain retrograde, the concept of the epicycle was introduced. A planet would move on the epicycle (the smaller circle) as the epicycle went around the Earth on the deferent (the larger circle). The planet would appear to shift back and forth among the background stars. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe.
    [Show full text]
  • THE DISTANCE to the YOUNG EXOPLANET 2M1207 B in the TW HYA ASSOCIATION. E. E. Mamajek, Harvard- Smithsonian Center for Astrophys
    Protostars and Planets V 2005 8522.pdf THE DISTANCE TO THE YOUNG EXOPLANET 2M1207 B IN THE TW HYA ASSOCIATION. E. E. Mamajek, Harvard- Smithsonian Center for Astrophysics, 60 Garden St., MS-42, Cambridge MA 02138, USA, ([email protected]). Introduction: Results: Recently, a faint companion to the young brown dwarf ² The proper motion and radial velocity of 2M1207 are statisti- 2MASSW J1207334-393254 (2M1207) was imaged [1], and cally consistent with TWAmembership (quantitatively strength- found to have common proper motion with its primary [2]. ening claims by [1,4]). The brown dwarf and companion are purported to be members ² The moving cluster method predicts a distance of 53 § 6 pc of the »10 Myr-old TW Hya Association (TWA) [3,4]. As- to the 2M1207 system. suming a distance of 70 § 20 pc and age of 10 Myr, the brown ² The improved distance roughly halves the previously cal- dwarf and companion are consistent with masses of »25 MJup culated luminosities for 2M1207 A and B, and reduces their » » and »5 MJup [1]. There is currently little constraint on the inferred masses to 21 MJup and 3 MJup using modern distance to this astrophysically interesting system (with the evolutionary tracks [9]. The current projected separation be- secondary possibly being the first imaged extrasolar planet). tween A and B is 41 § 5 AU. Although a trigonometric parallax is not yet available, it is pos- ² Objects in the literature with the “TWA” acronym seem to sible to use the proper motion and putative cluster membership be segregated by distance into at least two groups, with TWA of the 2M1207 system to estimate the distance using the mov- 12, 17, 18, 19, 24 appearing to be more distant (d ' 100- ing cluster method.
    [Show full text]