Basidiomycetes Associated with Alnus Glutinosa Habitats in Andros Island (Cyclades, Greece)

Total Page:16

File Type:pdf, Size:1020Kb

Basidiomycetes Associated with Alnus Glutinosa Habitats in Andros Island (Cyclades, Greece) diversity Article Basidiomycetes Associated with Alnus glutinosa Habitats in Andros Island (Cyclades, Greece) Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. Zervakis * Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, 11855 Athens, Greece; [email protected] (E.P.); [email protected] (V.F.); [email protected] (V.D.) * Correspondence: [email protected]; Tel.: +30-210-5294341 Received: 15 May 2020; Accepted: 7 June 2020; Published: 9 June 2020 Abstract: Alluvial forests dominated by black alder (Alnus glutinosa) are widespread in Europe along river banks and watercourses forming a habitat of renowned ecological/conservation importance. Despite the considerable interest this habitat has attracted in terms of the associated fungal diversity, very few pertinent data are available from the eastern Mediterranean. Andros island (Aegean Sea, Greece) hosts the southernmost population of A. glutinosa in the Balkan Peninsula; such stands have been systematically inventoried for several years in respect to macrofungi. In total, 187 specimens were collected and studied by examining morphoanatomic features and by evaluating (when necessary) the outcome of sequencing the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) to elucidate their identity and obtain an insight into phylogenetic relationships. As a result, 106 species were recorded, 92 are saprotrophic and 14 form ectomycorrhizae (ECM) with alders. Twenty-one species are first national records, while 68 other species are reported for the first time from this habitat in Greece. Several findings of particular interest due to their rarity, ecological preferences and/or taxonomic status are presented in detail and discussed, e.g., six Alnicola taxa, Cortinarius americanus, Lactarius obscuratus, Paxillus olivellus and Russula pumila (among the ECMs), and the saprotrophs Entoloma uranochroum, Gymnopilus arenophilus, Hyphoderma nemorale, Lepiota ochraceofulva, Phanerochaete livescens and Psathyrella hellebosensis. Keywords: macrofungi; Basidiomycota; mushroom diversity; ectomycorrhiza; saprotroph; alder; Aegean Sea; Mediterranean; Alnicola 1. Introduction Alluvial forests with Alnus glutinosa Gaertn. and Fraxinus excelsior L. (priority habitat 91E0*; Annex I, Directive 92/43/EEC) are distributed throughout Europe, but they are generally rare and threatened since only remnants exist, mainly in central and northern Europe [1]. Alder stands are considerably less frequent in the Mediterranean region, where the repercussions of changes in the hydrological cycle caused by global warming and climate destabilization are much more evident [2]. The southernmost limit of the priority habitat 91E0* in the Balkan Peninsula is located in Andros island (Figure1), i.e., the northernmost in the Cyclades and situated at a transition zone between continental Greece and other islands of the Aegean Archipelago. From the geomorphological point of view, it is characterized by a remarkably intense relief and by many rivulets and streams of constant flow, which are unique among most of Central and South Aegean islands. A. glutinosa trees demonstrate a patchy distribution in Andros, predominantly occurring along the main streams within the Site of Community Importance (SCI) GR4220001 and in altitudes ranging from sea level to as high as 850 m above sea level (a.s.l.), very close to the highest peaks of the island. In many cases black alders are mixed with Platanus orientalis L., Fraxinus ornus L. and/or Nerium oleander L. (in lower altitudes), while they also form pure stands, as it is the case at the estuaries of the Vori stream in NE Andros. Diversity 2020, 12, 232; doi:10.3390/d12060232 www.mdpi.com/journal/diversity Diversity 2019, 11, x FOR PEER REVIEW 2 of 21 Diversityaltitudes)2020, ,while12, 232 they also form pure stands, as it is the case at the estuaries of the Vori stream in2 of NE 22 Andros. FigureFigure 1.1. MapMap presentingpresenting NaturaNatura 20002000 sites,sites, whichwhich includeinclude thethe prioritypriority habitathabitat 91E0*91E0* inin continentalcontinental EuropeEurope (in(in green)green) andand inin islandsislands (in(in blue);blue); AndrosAndros islandisland isis indicatedindicated byby thethe redred arrow.arrow. DataData fromfrom https:https://www.eea.europa.eu/data//www.eea.europa.eu/data-and-maps-and-maps/data/natura-6./data/natura-6. AlderAlder treestrees areare knownknown toto formform symbiotic relationshipsrelationships withwith nitrogen-fixingnitrogen-fixing actinomycetesactinomycetes ofof thethe genusgenus FrankiaFrankia BrunchorstBrunchorst [[3,4],3,4], withwith arbusculararbuscular mycorrhizalmycorrhizal fungifungi (AM)(AM) ofof GlomeromycotaGlomeromycota [[5,6]5,6] andand withwith variousvarious ectomycorrhizalectomycorrhizal (ECM)(ECM) fungifungi ofof AscomycotaAscomycota andand BasidiomycotaBasidiomycota [[7–9].7–9]. EuropeanEuropean alderalder standsstands have been been relatively relatively well well-studied-studied in in terms terms of ofboth both macro- macro- and and microfungal microfungal communities, communities, and andapprox. approx. 1000 1000 species species of saprotrophic of saprotrophic and and ECM ECM macrofungi macrofungi were were reported reported [10–15]. [10–15]. In In addition, mycocoenologicalmycocoenological studies from Europe and North America suggested that ECM fungi of Alnus spp. exhibitexhibit aa remarkablyremarkably highhigh degreedegree ofof hosthost specificityspecificity comparedcompared toto otherother treetree speciesspecies [[8,16],8,16], whilewhile thethe analysisanalysis ofof bothboth sporophoressporophores andand ectomycorrhizaeectomycorrhizae evidencedevidenced thatthat aldersalders havehave aa lowlow numbernumber ((<50)<50) ofof ECMECM symbiontssymbionts worldwideworldwide [[17–19].17–19]. LimitedLimited knowledgeknowledge is is available available on on the the diversity diversity of fungiof fungi associated associated with with alders alders in Greece, in Greece, andonly and preliminaryonly preliminary data are data reported are reported in the few in the pertinent few pertinent publications publications [20,21]. On [20,21]. the other On hand,the other Andros hand, is theAndros only is island the only of the island Aegean of the Archipelago Aegean Archipelago where a systematic where a inventorysystematic of inventory macrofungi of macrofungi is in progress is forin progress more than for 20more years. than Biotopes 20 years. characterized Biotopes characterized by river banks,by river springs banks, andsprings alluvial and alluvial forests, forests, where A.where glutinosa A. glutinosais often is the often dominant the dominant tree species, tree species, were forayed were forayed in the past in the and past 37 mushroomand 37 mushroom species werespecies reported were reported from this from particular this particular habitat in Andros,habitat in including Andros, ECMincluding symbionts ECM assymbionts well as xylotrophic, as well as litterxylotrophic, and/or humuslitter and/or saprotrophs humus [sa22protrophs–24]. Among [22–24]. the latter, AmongEntoloma the latter, alnicola EntolomaNoordel. alnicola & Polemis Noordel. was & describedPolemis was asnew described species asnew for science species and for it science is still knownand it is from still theknown type from locality the onlytype [locality25]. only [25]. SinceSince 2017, mycodiversity studies in in alder alder stands stands of of Andros Andros were were intensified intensified in in the the frame frame of of a aLIFE LIFE Nature Nature project project (LIFE16-NAT_GR_000606), (LIFE16-NAT_GR_000606), which which -among -among others- others- aims aims at the at theconservation conservation and and restoration of the priority habitat 91E0* in the island. Hence, during the last few years, new Diversity 2019, 11, x FOR PEER REVIEW 3 of 21 Diversity 2020, 12, 232 3 of 22 restoration of the priority habitat 91E0* in the island. Hence, during the last few years, new sites with sitesalder with stands alder were stands repeatedly were repeatedly forayed forayed(in addition (in addition to those to previously those previously investigated), investigated), and a andlarge a largenumber number of new of new collections collections were were made. made. These, These, together together with with previously previously sampled—butsampled—but stillstill unidentified—specimens,unidentified—specimens, werewere subjectedsubjected toto detaileddetailed morphoanatomicalmorphoanatomical examinationexamination inin conjunctionconjunction withwith sequencingsequencing andand phylogeneticphylogenetic analysesanalyses (where(where judgedjudged necessary)necessary) inin order to assess their identity. Moreover,Moreover, inin severalseveral occasions,occasions, pastpast relevantrelevant reportsreports onon recordedrecorded taxataxa werewere revisedrevised/re-evaluated/re-evaluated accordingaccording toto thethe latestlatest respectiverespective taxonomictaxonomic andand phylogeneticphylogenetic concepts. concepts. Hence,Hence, thisthis workwork presentspresents anan updatedupdated compilation compilation of of available available data data on theon diversitythe diversity of macrofungi of macrofungi in a habitat in a habitat of significant of significant interest occurringinterest occurring at the limits at the of limits its distribution of its distribution in Europe. in Europe. 2.2. MaterialsMaterials andand MethodsMethods 2.1.2.1. SamplingSampling ofof BiologicalBiological MaterialMaterial DataData
Recommended publications
  • Covered in Phylloboletellus and Numerous Clamps in Boletellus Fibuliger
    PERSOONIA Published by the Rijksherbarium, Leiden Volume 11, Part 3, pp. 269-302 (1981) Notes on bolete taxonomy—III Rolf Singer Field Museum of Natural History, Chicago, U.S.A. have Contributions involving bolete taxonomy during the last ten years not only widened the knowledge and increased the number of species in the boletes and related lamellate and gastroid forms, but have also introduced a large number of of new data on characters useful for the generic and subgeneric taxonomy these is therefore timely to fungi,resulting, in part, in new taxonomical arrangements. It consider these new data with a view to integratingthem into an amended classifi- cation which, ifit pretends to be natural must take into account all observations of possible diagnostic value. It must also take into account all sufficiently described species from all phytogeographic regions. 1. Clamp connections Like any other character (including the spore print color), the presence or absence ofclamp connections in is neither in of the carpophores here nor other groups Basidiomycetes necessarily a generic or family character. This situation became very clear when occasional clamps were discovered in Phylloboletellus and numerous clamps in Boletellus fibuliger. Kiihner (1978-1980) rightly postulates that cytology and sexuality should be considered wherever at all possible. This, as he is well aware, is not feasible in most boletes, and we must be content to judgeclamp-occurrence per se, giving it importance wherever associated with other characters and within a well circumscribed and obviously homogeneous group such as Phlebopus, Paragyrodon, and Gyrodon. (Heinemann (1954) and Pegler & Young this is (1981) treat group on the family level.) Gyroporus, also clamp-bearing, considered close, but somewhat more removed than the other genera.
    [Show full text]
  • <I>Phylloporus
    VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 341–359 doi.org/10.3114/fuse.2018.02.10 Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides A. Farid1*§, M. Gelardi2*, C. Angelini3,4, A.R. Franck5, F. Costanzo2, L. Kaminsky6, E. Ercole7, T.J. Baroni8, A.L. White1, J.R. Garey1, M.E. Smith6, A. Vizzini7§ 1Herbarium, Department of Cell Biology, Micriobiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA 2Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 3Via Cappuccini 78/8, I-33170 Pordenone, Italy 4National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 5Wertheim Conservatory, Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA 6Department of Plant pathology, University of Florida, Gainesville, Florida 32611, USA 7Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 8Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 1304, USA *Authors contributed equally to this manuscript §Corresponding authors: [email protected], [email protected] Key words: Abstract: The monotypic genus Phylloporopsis is described as new to science based on Phylloporus boletinoides. This Boletales species occurs widely in eastern North America and Central America. It is reported for the first time from a neotropical lamellate boletes montane pine woodland in the Dominican Republic. The confirmation of this newly recognised monophyletic genus is molecular phylogeny supported and molecularly confirmed by phylogenetic inference based on multiple loci (ITS, 28S, TEF1-α, and RPB1).
    [Show full text]
  • Porpomyces Submucidus (Hydnodontaceae, Basidiomycota), a New Species from Tropical China Based on Morphological and Molecular Evidence
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283034971 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence Article in Phytotaxa · October 2015 DOI: 10.11646/phytotaxa.230.1.5 CITATIONS READS 2 186 2 authors, including: Fang Wu Beijing Forestry University 73 PUBLICATIONS 838 CITATIONS SEE PROFILE All content following this page was uploaded by Fang Wu on 30 May 2018. The user has requested enhancement of the downloaded file. Phytotaxa 230 (1): 061–068 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.230.1.5 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence FANG WU*, YUAN YUAN & CHANG-LIN ZHAO 1Institute of Microbiology, PO Box 61, Beijing Forestry University, Beijing 100083, China * Corresponding authors’ e-mails: [email protected] (FW) Abstract A new species is described from tropical China as Porpomyces submucidus on the basis of both morphological characters and molecular evidence. Phylogenetic analyse based on the ITS sequence, LSU sequence and the ITS+LSU sequence show that the new species belongs to Porpomyces and forms a distict clade as a sister group of Porpomyces mucidus. The fungus is characterized by thin, white to cream, resupinate basidiome with cottony to rhizomorphic margin, small pores (7–9 per mm), a monomitic hyphal structure with clamped generative hyphae, usually ampullated at most septa, and small, hyaline, thin-walled, ellipsoid basidiospores measuring 2.2–2.8 × 1.2–1.8 μm.
    [Show full text]
  • Conservation Status Assessment
    Element Ranking Form Oregon Biodiversity Information Center Conservation Status Assessment Scientific Name: Fayodia bisphaerigera Classification: Fungus Assessment area: Global Heritage Rank: G3Q Rank Date: 3/9/2017 Assigned Rank Comments: None. Rank Adjustment Notes: Found over a wide range but rare within its range. In 2017 L. Norvell says "A good species; widespread in Asia, Europe (including Iceland), North America; critically threatened in Czech Republic (Holec & Beran 2006, Holec & al. 2015), France (Larent-Dargent 2009), and on Norway red list; 22 historical occurrences noted in Region 6. Antonín (2004) provides an excellent description of the European type material. NOTE: In 2002 Norvell noted taxonomic confusion between F. bisphaerigera and 'Mycena rainierensis' to be resolved when Redhead combined M. rainierensis in Fayodia. As no such transfer has been made, the status of the PNW taxon remains unresolved. The PNW reports of F. 'biphaerigera', would reflect the rarity accurately, and current ranking accepted until taxonomy is resolved." (Holec, Jan; Beran, Miroslav (eds.) 2006. Red list of fungi (macromycetes) of the Czech Republic]. – Příroda, Praha, 24: 1-282. [in Czech with English summary] ; Holec, Jan; Kříž, Martin; Pouzar, Zdeněk; Šandová, Markéta. 2015. Boubínský prales virgin forest, a Central European refugium of boreal-montane and old-growth forest fungi. Czech Mycology 67(2): 157–226. ; Laurent-Dargent, Jonathan. 2009. La Liste Rouge des Champignons (macromycètes) rares ou menacés de Lorraine. Thesis for Docteur de Pharmacie: Universite Henry Poincare - Nancy I. 120 pp ; Antonín, Vladimír. 2004. Notes on the genus Fayodia s.l. (Tricholomataceae) — II. Type studies of European species described in the genera Fayodia and Gamundia.
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Identification of Three Wood Decay Fungi in Yeoninsan Provincial Park, Korea
    Journal240 of Species Research 7(3):240-247, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 3 Identification of three wood decay fungi in Yeoninsan Provincial Park, Korea Sun Lul Kwon1, Seokyoon Jang1, Min-Ji Kim2, Kyeongwon Kim1, Chul-Whan Kim1, Yeongseon Jang3, Young Woon Lim2, Changmu Kim4 and Jae-Jin Kim1,* 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea 2School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea 3Division of Wood Chemistry and Microbiology, National Institute of Forest Science, Seoul 02455, Republic of Korea 4Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea *Correspondent: [email protected] Though several wood decay fungi have been reported in the world-wide, only about 600 wood decay fungi have been reported in Korea to date. Thus, the objective of this study was to secure resources for the wood decay fungi in Korea. We investigated wood decay fungi in Yeoninsan Provincial Park, Korea, and the collected specimens were identified based on ITS sequence analysis. Two species were unrecorded species in Korea: Postia hirsuta (Polyporales, Basidiomycota) and Hyphodontia reticulata (Hymenochaetales, Basidiomycota). Another species was previously reported without detailed description: Ceriporia alachuana (Polyporales, Basidiomycota). Here, we provided additional detailed microscopic features and phylogenetic analysis of these species. Keywords: ‌Basidiomycota, ITS, morphology, phylogeny, taxonomy Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.3.240 INTRODUCTION ITS show low species resolution for some fungi (Hong et al., 2015), it is suitable for most wood decay fungi (Jang Wood decay fungi play a significant role in forest eco- et al., 2016b).
    [Show full text]
  • Metagenomic Approach of Associated Fungi with Megaplatypus Mutatus (Coleoptera: Platypodinae)
    Silva Fennica vol. 52 no. 3 article id 9940 Category: research article https://doi.org/10.14214/sf.9940 SILVA FENNICA http://www.silvafennica.fi Licenced CC BY-SA 4.0 ISSN-L 0037-5330 | ISSN 2242-4075 (Online) The Finnish Society of Forest Science Esteban Ceriani-Nakamurakare1,2, Sergio Ramos3, Carolina A. Robles1,2, María V. Novas1,2, María F. D´Jonsiles1,2, Paola Gonzalez-Audino4 and Cecilia Carmarán1,2 Metagenomic approach of associated fungi with Megaplatypus mutatus (Coleoptera: Platypodinae) Ceriani-Nakamurakare E., Ramos S., Robles C.A., Novas M.V., D´Jonsiles M.F., Gonzalez- Audino P., Carmarán C. (2018). Metagenomic approach of associated fungi with Megaplatypus mutatus (Coleoptera: Platypodinae). Silva Fennica vol. 52 no. 3 article id 9940. 16 p. https://doi. org/10.14214/sf.9940 Highlights • There were no significant effects of host plant and location on fungal richness. • Two fungal species, belonging to Fusarium and Candida genera, were present in all the studied associations. • Results suggest that host plant identity would not be crucial to determine the composition of fungal communities associated to Megaplatypus mutatus. Abstract Megaplatypus mutatus is a major forest pest in Argentina and an emerging pest in Europe. In this study the multitrophic interactions between M. mutatus and associated fungi were assessed with a metagenomics approach (454-pyrosequencing). A total of 270 collection points from insect galleries from three locations in Argentina were pooled for pyrosequencing analyses. Two hosts, Populus deltoides and Casuarina cunninghamiana, were independently evaluated to characterize the fungal communities associated to M. mutatus; compare the culture-independent approach with previous culturing studies, in terms of data recovery related to the fungal community composi- tion, and test the specificity of the fungal communities amongst locations and hosts.
    [Show full text]
  • Coprinellus Andreorum: a New Species from Malta and South America
    IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 21-29 Journal homepage: https://italianmycology.unibo.it/ Short note Coprinellus andreorum: a new species from Malta and South America Carmel Sammut1, Alexander Karich2 1 - 216 Flat 1 St. Joseph Flts., Rue d´Argens, Gzira, GZR 1367, Malta 2 - Technische Universität Dresden - International Institut Zittau, Markt 23, 02763 Zittau, Germany Corresponding author e-mail: [email protected] ARTICLE INFO Received 22/2/2021; accepted 14/4/2021 https://doi.org/10.6092/issn.2531-7342/12445 Abstract Coprinellus andreorum sp. nov. is described for the first time from Malta. A full description with illustrations of the macro- and micromorphological characters, as well as its phylogenetic position is provided. This species differs from Coprinellus aureogranulatus by the large pleurocystidia, the narrower spores and multidigitate caulocystidia. Some species from sect. Domestici are discussed and compared. Keywords Agaricales, Psathyrellaceae, Aureogranulati, morphology, taxonomy Introduction Following a recent clearing of a small area in Buskett (Siggiewi, Malta) several large dead branches of Ceratonia siliqua L. were torn down to smaller pieces and dispersed above the soil together with other dead branches from Quercus ilex L. The sudden abundance, on the soil, of degraded lignicolous material coupled with abundant rain in the early weeks of October 2020 has resulted in a number of fast growing coprinii appearing over a few days towards the end of October. The list of lignicolous fungi noted in the area were both previously encountered as well as new records for the area and include Parasola conopilea (Fr.) Örstadius & E. Larss., Coprinopsis melanthina (Fr.) Örstadius & E.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Version 1.1 Standardized Inventory Methodologies for Components Of
    Version 1.1 Standardized Inventory Methodologies For Components Of British Columbia's Biodiversity: MACROFUNGI (including the phyla Ascomycota and Basidiomycota) Prepared by the Ministry of Environment, Lands and Parks Resources Inventory Branch for the Terrestrial Ecosystem Task Force, Resources Inventory Committee JANUARY 1997 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data Main entry under title: Standardized inventory methodologies for components of British Columbia’s biodiversity. Macrofungi : (including the phyla Ascomycota and Basidiomycota [computer file] Compiled by the Elements Working Group of the Terrestrial Ecosystem Task Force under the auspices of the Resources Inventory Committee. Cf. Pref. Available through the Internet. Issued also in printed format on demand. Includes bibliographical references: p. ISBN 0-7726-3255-3 1. Fungi - British Columbia - Inventories - Handbooks, manuals, etc. I. BC Environment. Resources Inventory Branch. II. Resources Inventory Committee (Canada). Terrestrial Ecosystems Task Force. Elements Working Group. III. Title: Macrofungi. QK605.7.B7S72 1997 579.5’09711 C97-960140-1 Additional Copies of this publication can be purchased from: Superior Reproductions Ltd. #200 - 1112 West Pender Street Vancouver, BC V6E 2S1 Tel: (604) 683-2181 Fax: (604) 683-2189 Digital Copies are available on the Internet at: http://www.for.gov.bc.ca/ric PREFACE This manual presents standardized methodologies for inventory of macrofungi in British Columbia at three levels of inventory intensity: presence/not detected (possible), relative abundance, and absolute abundance. The manual was compiled by the Elements Working Group of the Terrestrial Ecosystem Task Force, under the auspices of the Resources Inventory Committee (RIC). The objectives of the working group are to develop inventory methodologies that will lead to the collection of comparable, defensible, and useful inventory and monitoring data for the species component of biodiversity.
    [Show full text]
  • Hans Halbwachs
    Hans Halbwachs hat are fungal characteristics Moreover, the variability of spore traits in winter. It has been speculated that good for? Well, for identifying is bewildering (as was discussed by Else this may be a strategy to avoid predators fungi, of course! Field Vellinga in the previous issue of FUNGI). (Halbwachs et al., 2016), though this Wmycologists all over the world are living Size, ornamentation, and pigmentation would imply investment, e.g., into encyclopedias when it comes to fungal occur in all combinations (Fig. 2). These antifreeze substances and producing traits. Even the most subtle differences are the visible characteristics which may relatively small fruit bodies, as in in spore size or cap coloration have their be grouped in (1) morphological (shape, Flammulina velutipes or Hygrophorus place in identifying mushrooms and size) and (2) physiological (pigments, hypothejus. Generally, species fruiting other fungi. Quite many mycologists are taste, smell, toxicity, etc.). A third, more in late autumn seem to have larger intrigued by the endless variations, for mysterious trait, is the phenology of fruit fruit bodies, at least in Cortinarius instance of fruit bodies (Fig. 1). bodies. Some do it in spring, some even (Halbwachs, 2018). Figure 1. Examples of basidiomycete fruit body shapes and colors. From left to right top: Amanita flavoconia (courtesy J. Veitch), Lactarius indigo (courtesy A. Rockefeller), Butyriboletus frostii (courtesy D. Molter); bottom: Calostoma cinnabarinum (courtesy D. Molter), Tricholomopsis decora (courtesy W. Sturgeon), Mycena adonis (courtesy D. Molter). creativecommons. org/licenses/by-sa/3.0/deed.en. 18 FUNGI Volume 12:1 Spring 2019 Knockin’ on Evolution’s Door Although some ideas are circulating about the functionality of fungal traits, mycologists want to know more about their ecological implications.
    [Show full text]
  • Agaricales, Hymenogastraceae)
    CZECH MYCOL. 62(1): 33–42, 2010 Epitypification of Naucoria bohemica (Agaricales, Hymenogastraceae) 1 2 PIERRE-ARTHUR MOREAU and JAN BOROVIČKA 1 Faculté des Sciences Pharmaceutiques et Biologiques, Univ. Lille Nord de France, F–59006 Lille, France; [email protected] 2 Nuclear Physics Institute, v.v.i., Academy of Sciences of the Czech Republic, Řež 130, CZ–25068 Řež near Prague, Czech Republic; [email protected] Moreau P.-A. and Borovička J. (2010): Epitypification of Naucoria bohemica (Agaricales, Hymenogastraceae). – Czech Mycol. 62(1): 33–42. The holotype of Naucoria bohemica Velen. has been revised. This collection corresponds to the most frequent interpretation of the taxon in modern literature. Since the condition of the material is not sufficient to determine microscopic and molecular characters, the authors designate a well-docu- mented collection from the same area (central Bohemia) and corresponding in all aspects with the holotype as an epitype. Description and illustrations are provided for both collections. Key words: Basidiomycota, Alnicola bohemica, taxonomy, typification. Moreau P.-A. a Borovička J. (2010): Epitypifikace druhu Naucoria bohemica (Agaricales, Hymenogastraceae). – Czech Mycol. 62(1): 33–42. Revidovali jsme holotyp druhu Naucoria bohemica Velen. Tato položka odpovídá nejčastější inter- pretaci tohoto taxonu v moderní literatuře, avšak není v dostatečně dobrém stavu pro mikroskopické a molekulární studium. Autoři proto stanovují jako epityp dobře dokumentovaný sběr pocházející ze stejné oblasti (střední Čechy), který ve všech aspektech odpovídá holotypu. Obě položky jsou dokumentovány popisem a vyobrazením. INTRODUCTION Naucoria bohemica Velen., a species belonging to a small group of ectomyco- rrhizal naucorioid fungi devoid of clamp connections [currently classified in the genus Alnicola Kühner, or alternatively Naucoria (Fr.: Fr.) P.
    [Show full text]