Geology of Sand Dunes Page 1 of 11
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. -
Microplastics in Beaches of the Baja California Peninsula
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA Chemical Sciences and Engineering Department MICROPLASTICS IN BEACHES OF THE BAJA CALIFORNIA PENINSULA TERESITA DE JESUS PIÑON COLIN FERNANDO WAKIDA KUSUNOKI Sixth International Marine Debris Conference SAN DIEGO, CALIFORNIA, UNITED STATES 7 DE MARZO DEL 2018 OUTLINE OF THE PRESENTATION INTRODUCTION METHODOLOGY RESULTS CONCLUSIONS OBJECTIVE. The aim of this study was to investigate the occurrence and distribution of microplastics in sandy beaches located in the Baja California peninsula. STUDY AREA 1200 km long and around 3000 km of seashore METHODOLOGY SAMPLED BEACHES IN THE BAJA CALIFORNIA PENINSULA • . • 21 sampling sites. • 12 sites located in the Pacific ocean coast. • 9 sites located the Gulf of California coast. • 9 sites classified as urban beaches (U). • 12 sites classified as rural beaches (R). SAMPLING EXTRACTION METHOD BY DENSITY. RESULTS Bahía de los Angeles. MICROPLASTICS ABUNDANCE (R) rural. (U) urban. COMPARISON WITH OTHER PUBLISHED STUDIES Area CONCENTRATIÓN UNIT REFERENCE West coast USA 39-140 (85) Partícles kg-1 Whitmire et al. (2017) (National Parks) United Kigdom 86 Partícles kg-1 Thompson et al. (2004) Mediterranean Sea 76 – 1512 (291) Partícles kg-1 Lots et al. (2017) North Sea 88-164 (190) Particles Kg-1 Lots et al. (2017) Baja California Ocean Pacific 37-312 (179) Particles kg-1 This study Gulf of 16-230 (76) Particles kg-1 This study California MORPHOLOGY OF MICROPLASTICS FOUND 2% 3% 4% 91% Fibres Granules spheres films Fiber color percentages blue Purple black Red green 7% 2% 25% 7% 59% Examples of shapes and colors of the microplastics found PINK FILM CABO SAN LUCAS BEACH POSIBLE POLYAMIDE NYLON TYPE Polyamide nylon type reference (Browne et al., 2011). -
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Sedimentation and Shoaling Work Unit
1 SEDIMENTARY PROCESSES lAND ENVIRONMENTS IIN THE COLUMBIA RIVER ESTUARY l_~~~~~~~~~~~~~~~7 I .a-.. .(.;,, . I _e .- :.;. .. =*I Final Report on the Sedimentation and Shoaling Work Unit of the Columbia River Estuary Data Development Program SEDIMENTARY PROCESSES AND ENVIRONMENTS IN THE COLUMBIA RIVER ESTUARY Contractor: School of Oceanography University of Washington Seattle, Washington 98195 Principal Investigator: Dr. Joe S. Creager School of Oceanography, WB-10 University of Washington Seattle, Washington 98195 (206) 543-5099 June 1984 I I I I Authors Christopher R. Sherwood I Joe S. Creager Edward H. Roy I Guy Gelfenbaum I Thomas Dempsey I I I I I I I - I I I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PREFACE The Columbia River Estuary Data Development Program This document is one of a set of publications and other materials produced by the Columbia River Estuary Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. In response to these concerns, the Governors of the states of Oregon and Washington requested in 1974 that the Pacific Northwest River Basins Commission (PNRBC) undertake an interdisciplinary ecological study of the estuary. At approximately the same time, local governments and port districts formed the Columbia River Estuary Study Taskforce (CREST) to develop a regional management plan for the estuary. PNRBC produced a Plan of Study for a six-year, $6.2 million program which was authorized by the U.S. -
Flood Basalts and Glacier Floods—Roadside Geology
u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
The Rate of Granule Ripple Movement on Earth and Mars
Icarus 203 (2009) 71–76 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The rate of granule ripple movement on Earth and Mars James R. Zimbelman a,*, Rossman P. Irwin III a, Steven H. Williams b, Fred Bunch c, Andrew Valdez c, Scott Stevens d a Center for Earth and Planetary Studies, National Air and Space Museum MRC 315, Smithsonian Institution, Washington, DC 20013-7012, USA b Education Division, National Air and Space Museum MRC 305, Smithsonian Institution, Washington, DC 20013-7012, USA c Great Sand Dunes National Park and Preserve, 11500 Highway 150, Mosca, CO 81146-9798, USA d National Climatic Data Center, Federal Building, 151 Patton Ave., Asheville, NC 28801-5001, USA article info abstract Article history: The rate of movement for 3- and 10-cm-high granule ripples was documented in September of 2006 at Received 25 July 2008 Great Sand Dunes National Park and Preserve during a particularly strong wind event. Impact creep Revised 13 March 2009 induced by saltating sand caused 24 granules minÀ1 to cross each cm of crest length during wind that Accepted 13 March 2009 averaged 9msÀ1 (at a height well above 1 m), which is substantially larger than the threshold for sal- Available online 17 April 2009 tation of sand. Extension of this documented granule movement rate to Mars suggests that a 25-cm-high granule ripple should require from hundreds to thousands of Earth-years to move 1 cm under present Keywords: atmospheric conditions. Earth Published by Elsevier Inc. Geological processes Mars surface 1. Introduction ples. -
Sand Dunes Computer Animations and Paper Models by Tau Rho Alpha*, John P
Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Sand Dunes Computer animations and paper models By Tau Rho Alpha*, John P. Galloway*, and Scott W. Starratt* Open-file Report 98-131-A - This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. * U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ omega? .wr.usgs .gov [email protected] [email protected] (gobackward) <j (goforward) Description of Report This report illustrates, through computer animations and paper models, why sand dunes can develop different forms. By studying the animations and the paper models, students will better understand the evolution of sand dunes, Included in the paper and diskette versions of this report are templates for making a paper models, instructions for there assembly, and a discussion of development of different forms of sand dunes. In addition, the diskette version includes animations of how different sand dunes develop. Many people provided help and encouragement in the development of this HyperCard stack, particularly David M. Rubin, Maura Hogan and Sue Priest. -
Bed-Load Transport Equation for Sheet Flow
TECHNICAL NOTES Bed-Load Transport Equation for Sheet Flow Athol D. Abrahams1 Abstract: When open-channel flows become sufficiently powerful, the mode of bed-load transport changes from saltation to sheet flow. Where there is no suspended sediment, sheet flow consists of a layer of colliding grains whose basal concentration approaches that of the stationary bed. These collisions give rise to a dispersive stress that acts normal to the bed and supports the bed load. An equation for predicting the rate of bed-load transport in sheet flow is developed from an analysis of 55 flume and closed conduit experiments. The ϭ ϭ ϭ ϭ ϭ ␣ϭ equation is ib where ib immersed bed-load transport rate; and flow power. That ib implies that eb tan ub /u, where eb ϭ ϭ ␣ϭ Bagnold’s bed-load transport efficiency; ub mean grain velocity in the sheet-flow layer; and tan dynamic internal friction coeffi- ␣Ϸ Ϸ Ϸ cient. Given that tan 0.6 for natural sand, ub 0.6u, and eb 0.6. This finding is confirmed by an independent analysis of the experimental data. The value of 0.60 for eb is much larger than the value of 0.12 calculated by Bagnold, indicating that sheet flow is a much more efficient mode of bed-load transport than previously thought. DOI: 10.1061/͑ASCE͒0733-9429͑2003͒129:2͑159͒ CE Database keywords: Sediment transport; Bed loads; Geomorphology. Introduction transport process. In contrast, the bed-load transport equation pro- When open-channel flows transporting noncohesive sediments posed here is extremely simple and entirely empirical. -
Chapter 14. Streams and Floods
Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 14. Streams and Floods Adapted by Joyce M. McBeth, University of Saskatchewan from Physical Geology by Steven Earle Learning Objectives After carefully reading this chapter, completing the exercises within it, and answering the questions at the end, you should be able to: • Explain the hydrological cycle, its relevance to streams, and describe the residence time of water in these systems • Describe what a drainage basin is, and explain the origins of the different types of drainage patterns • Explain how streams become graded, and how certain geological and anthropogenic changes can result in a stream becoming ungraded • Describe the formation of stream terraces • Describe the processes that move sediments in streams, and how changes in stream velocity affect the types of sediments that are moved by the stream • Explain the origin of natural stream levees • Describe the process of stream evolution and the types of environments where one would expect to find straight-channel, braided, and meandering streams • Describe the annual flow characteristics of typical streams in Canada and the processes that lead to flooding • Describe some of the important historical floods in Canada • Determine the probability of floods of various magnitudes, based on the flood history of a stream • Explain some of the steps that we can take to limit damage from flooding Why Study Streams? Figure 14.1 A small waterfall on Johnston Creek in Johnston Canyon, Banff National Park, AB Source: Steven Earle (2015) CC BY 4.0 view source https://opentextbc.ca/geology/ Chapter 14. -
Marine Plankton Diatoms of the West Coast of North America
MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. CUPP UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1943 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: H. U. SVERDRUP, R. H. FLEMING, L. H. MILLER, C. E. ZoBELL Volume 5, No.1, pp. 1-238, plates 1-5, 168 text figures Submitted by editors December 26,1940 Issued March 13, 1943 Price, $2.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY, CALIFORNIA _____________ CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES, No. 190] PRINTED IN THE UNITED STATES OF AMERICA Taxonomy and taxonomic names change over time. The names and taxonomic scheme used in this work have not been updated from the original date of publication. The published literature on marine diatoms should be consulted to ensure the use of current and correct taxonomic names of diatoms. CONTENTS PAGE Introduction 1 General Discussion 2 Characteristics of Diatoms and Their Relationship to Other Classes of Algae 2 Structure of Diatoms 3 Frustule 3 Protoplast 13 Biology of Diatoms 16 Reproduction 16 Colony Formation and the Secretion of Mucus 20 Movement of Diatoms 20 Adaptations for Flotation 22 Occurrence and Distribution of Diatoms in the Ocean 22 Associations of Diatoms with Other Organisms 24 Physiology of Diatoms 26 Nutrition 26 Environmental Factors Limiting Phytoplankton Production and Populations 27 Importance of Diatoms as a Source of food in the Sea 29 Collection and Preparation of Diatoms for Examination 29 Preparation for Examination 30 Methods of Illustration 33 Classification 33 Key 34 Centricae 39 Pennatae 172 Literature Cited 209 Plates 223 Index to Genera and Species 235 MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.