NA61/SHINE Experiment - Programme Beyond 2020∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Il Nostro Mondo
IL NOSTRO MONDO THE DESIGN, CONSTRUCTION AND PERFORMANCE OF THE CERN INTERSECTING STORAGE RINGS (ISR) A RECOLLECTION OF WORLD’S FIRST PROTON-PROTON COLLIDER KURT HÜBNER CERN, Geneva, Switzerland 1 Design which had a beam energy of 160 MeV. The interaction points to increase the collision rate The concept of colliding beams appeared design of these colliders started in 1957. but without special lattice insertions as one first in a German patent by Rolf Widerøe In 1961, the Accelerator Research Group would use these days. registered in 1943 and published in 1952. Division was expanded into the Accelerator Combined-function magnets were chosen However, at that time the intensity of beams Division as experienced manpower had as in the PS, i.e. the main magnets had a was too low for an exploitable collision rate as become available after the running-in of the magnetic dipole field to bend the beam and a beam accumulation had not yet been invented. PS in 1960. At the same time it was decided quadrupole field to focus the beam. This type The first ideas of a realistic design were to construct a small accelerator to test rf of magnet provided space for the elaborate published in 1956 by Gerard O’Neill and by the stacking, a technique to be experimentally pole-face windings foreseen to control the MURA Group lead by Donald Kerst in the USA. proven, as it was essential for the performance magnetic field to a very high precision. It also MURA had come up with beam accumulation and success of the ISR. -
Hagedorn's Hadron Mass Spectrum and the Onset of Deconfinement
Hagedorn’s Hadron Mass Spectrum and the Onset of Deconfinement∗ Marek Gazdzicki´ and Mark I. Gorenstein Abstract A brief history of the observation of the onset of deconfinement - the beginning of the creation of quark gluon plasma in nucleus-nucleus collisions with increasing collision energy - is presented. It starts with the measurement of hadron mass spectrum and the Hagedorn’s hypothesis of the limiting temperature of hadronic matter (the Hagedorn temperature). Then the conjecture that the Hage- dorn temperature is the phase transition temperature was formulated with the crucial Hagedorn participation. It was confirmed by the observation of the onset of decon- finement in lead-lead collisions at the CERN SPS energies. 1 Hadron Mass Spectrum and the Hagedorn Temperature A history of multi-particle production started with discoveries of hadrons, first in cosmic-ray experiments and soon after in experiments using beams of particles produced in accelerators. Naturally, the first hadrons, discovered in collisions of cosmic-ray particles, were the lightest ones, pion, kaon and L. With the rapid ad- vent of particle accelerators new particles were uncovered almost day-by-day. There are about 1000 hadronic states known so far. Their density in mass r(m) increases approximately exponentially as predicted by the Hagedorn’s Statistical Bootstrap Model [1] formulated in 1965: r(m) = const m−a exp(bm) : (1) In the case of point-like hadron states this leads to a single-particle partition func- tion: p ! V Z ¥ Z ¥ k2 + m2 Z(T;V) = dm k2dk exp − r(m) ; (2) arXiv:1502.07684v1 [nucl-th] 26 Feb 2015 2 2p mp 0 T Marek: Goethe-University, Frankfurt, Germany; and Jan Kochanowski University, Kielce, Poland Mark: Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine; and Frankfurt Institute for Advanced Studies, Frankfurt, Germany ∗Chapter in: R. -
Pos(ICRC2019)446
New Results from the Cosmic-Ray Program of the NA61/SHINE facility at the CERN SPS PoS(ICRC2019)446 Michael Unger∗ for the NA61/SHINE Collaborationy Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany E-mail: [email protected] The NA61/SHINE experiment at the SPS accelerator at CERN is a unique facility for the study of hadronic interactions at fixed target energies. The data collected with NA61/SHINE is relevant for a broad range of topics in cosmic-ray physics including ultrahigh-energy air showers and the production of secondary nuclei and anti-particles in the Galaxy. Here we present an update of the measurement of the momentum spectra of anti-protons produced in p−+C interactions at 158 and 350 GeV=c and discuss their relevance for the understanding of muons in air showers initiated by ultrahigh-energy cosmic rays. Furthermore, we report the first results from a three-day pilot run aimed at investigating the ca- pability of our experiment to measure nuclear fragmentation cross sections for the understanding of the propagation of cosmic rays in the Galaxy. We present a preliminary measurement of the production cross section of Boron in C+p interactions at 13.5 AGeV=c and discuss prospects for future data taking to provide the comprehensive and accurate reaction database of nuclear frag- mentation needed in the era of high-precision measurements of Galactic cosmic rays. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yhttp://shine.web.cern.ch/content/author-list c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). -
NA61/SHINE Facility at the CERN SPS: Beams and Detector System
Preprint typeset in JINST style - HYPER VERSION NA61/SHINE facility at the CERN SPS: beams and detector system N. Abgrall11, O. Andreeva16, A. Aduszkiewicz23, Y. Ali6, T. Anticic26, N. Antoniou1, B. Baatar7, F. Bay27, A. Blondel11, J. Blumer13, M. Bogomilov19, M. Bogusz24, A. Bravar11, J. Brzychczyk6, S. A. Bunyatov7, P. Christakoglou1, T. Czopowicz24, N. Davis1, S. Debieux11, H. Dembinski13, F. Diakonos1, S. Di Luise27, W. Dominik23, T. Drozhzhova20 J. Dumarchez18, K. Dynowski24, R. Engel13, I. Efthymiopoulos10, A. Ereditato4, A. Fabich10, G. A. Feofilov20, Z. Fodor5, A. Fulop5, M. Ga´zdzicki9;15, M. Golubeva16, K. Grebieszkow24, A. Grzeszczuk14, F. Guber16, A. Haesler11, T. Hasegawa21, M. Hierholzer4, R. Idczak25, S. Igolkin20, A. Ivashkin16, D. Jokovic2, K. Kadija26, A. Kapoyannis1, E. Kaptur14, D. Kielczewska23, M. Kirejczyk23, J. Kisiel14, T. Kiss5, S. Kleinfelder12, T. Kobayashi21, V. I. Kolesnikov7, D. Kolev19, V. P. Kondratiev20, A. Korzenev11, P. Koversarski25, S. Kowalski14, A. Krasnoperov7, A. Kurepin16, D. Larsen6, A. Laszlo5, V. V. Lyubushkin7, M. Mackowiak-Pawłowska´ 9, Z. Majka6, B. Maksiak24, A. I. Malakhov7, D. Maletic2, D. Manglunki10, D. Manic2, A. Marchionni27, A. Marcinek6, V. Marin16, K. Marton5, H.-J.Mathes13, T. Matulewicz23, V. Matveev7;16, G. L. Melkumov7, M. Messina4, St. Mrówczynski´ 15, S. Murphy11, T. Nakadaira21, M. Nirkko4, K. Nishikawa21, T. Palczewski22, G. Palla5, A. D. Panagiotou1, T. Paul17, W. Peryt24;∗, O. Petukhov16 C.Pistillo4 R. Płaneta6, J. Pluta24, B. A. Popov7;18, M. Posiadala23, S. Puławski14, J. Puzovic2, W. Rauch8, M. Ravonel11, A. Redij4, R. Renfordt9, E. Richter-Wa¸s6, A. Robert18, D. Röhrich3, E. Rondio22, B. Rossi4, M. Roth13, A. Rubbia27, A. Rustamov9, M. -
Improving the Slow Extraction Efficiency of the CERN Super
Improving the slow extraction efficiency of the CERN Super Proton Synchrotron Brunner Kristóf Faculty of Science Eötvös Loránd University Supervisors: Barna Dániel, Wigner RCP Christoph Wiesner, CERN May 2018 Contents 1 Introduction4 2 CERN accelerator complex5 2.1 Accelerators..................................... 5 2.2 Experiments..................................... 6 2.2.1 Colliders .................................. 7 2.2.2 Fixed target experiments.......................... 7 2.3 Current and future demands of fixed target experiments.............. 7 3 Introduction to accelerator physics9 3.1 History of linear and circular accelerators ..................... 9 3.2 Design orbit, focusing................................. 11 3.3 Betatron oscillation, the behaviour of single particles ................ 11 3.4 The Twiss-ellipse, the behaviour of the beam ................... 13 3.5 Normalised phase space............................... 15 3.6 Tune and resonances ................................ 16 4 Extraction from a synchrotron 19 4.1 Fast extraction.................................... 19 4.2 Multi-turn extraction ................................ 20 4.3 Sextupole driven slow extraction........................... 21 4.4 Possible enhancements............................... 24 4.4.1 Diffuser................................... 24 4.4.2 Dynamic bump............................... 26 4.4.3 Phase space folding............................. 26 5 Massless septum 28 5.1 Method of phase space folding using a massless septum.............. 29 6 Simulation -
Particle Physics Lecture 4: the Large Hadron Collider and Other Accelerators November 13Th 2009
Subatomic Physics: Particle Physics Lecture 4: The Large Hadron Collider and other accelerators November 13th 2009 • Previous colliders • Accelerating techniques: linacs, cyclotrons and synchrotrons • Synchrotron Radiation • The LHC • LHC energy and luminosity 1 Particle Acceleration Long-lived charged particles can be accelerated to high momenta using electromagnetic fields. • e+, e!, p, p!, µ±(?) and Au, Pb & Cu nuclei have been accelerated so far... Why accelerate particles? • High beam energies ⇒ high ECM ⇒ more energy to create new particles • Higher energies probe shorter physics at shorter distances λ c 197 MeV fm • De-Broglie wavelength: = 2π pc ≈ p [MeV/c] • e.g. 20 GeV/c probes a distance of 0.01 fm. An accelerator complex uses a variety of particle acceleration techniques to reach the final energy. 2 A brief history of colliders • Colliders have driven particle physics forward over the last 40 years. • This required synergy of - hadron - hadron colliders - lepton - hadron colliders & - lepton - lepton colliders • Experiments at colliders discovered W- boson, Z-boson, gluon, tau-lepton, charm, bottom and top-quarks. • Colliders provided full verification of the Standard Model. DESY Fermilab CERN SLAC BNL KEK 3 SppS̅ at CERNNo b&el HERAPrize for atPhy sDESYics 1984 SppS:̅ Proton anti-Proton collider at CERN. • Given to Carlo Rubbia and Simon van der Meer • Ran from 1981 to 1984. Nobel Prize for Physics 1984 • Centre of Mass energy: 400 GeV • “For their decisive • 6.9 km in circumference contributions to large • Two experiments: -
The Search for Charged Massive Supersymmetric Particles at the LHC
The Search for Charged Massive Supersymmetric Particles at the LHC Aleksey Pavlov A Senior Project Presented to Cal Poly June 5, 2012 This material is based upon work supported by The National Science Foundation under grant number 0969966. 1 Contents 1 Abstract 3 2 Introduction 3 3 Supersymmetry: An Extension of the Standard Model 5 4 CHAMPs 8 5 The LHC 9 6 The ALICE Detector 12 7 Analysis 14 8 Results 17 2 1 Abstract Charged Massive Particles (CHAMPs) are predicted in the Supersymmetry (SUSY) extension of the Standard Model though they have never been ob- served. We look for CHAMPs in the ALICE Detector at the Large Hadron Collider at CERN. While the main purpose of ALICE is to study Quark- Gluon Plasma, we take advantage of the tracking and time of flight capabil- ities of several sub-detectors in ALICE to look for signs of CHAMPs. These elusive particles are characterized by their slow velocity, high transverse mo- mentum and therefore heavy mass. Our research found a small handful of candidates among a large sample size but more work is required to confirm their identity and exclude the possibility that they have been misidentified. 2 Introduction The Standard Model of Particle Physics (SM) is the modern theory describ- ing how fundamental particles interact and behave. It was developed in the second half of the 20th Century after physicist Sheldon Glashow found a way to combine, or unify, the electromagnetic and electroweak forces [7]. In 1973 Glashow's electroweak theory was experimentally confirmed at CERN, the European Organization for Nuclear Research in Geneva, Switzerland, when nuetral currents through the weak nuclear force were measured. -
THE PROTON-ANTIPROTON COLLIDER Lecture Delivered at CERN on 25 November 1987 Lyndon Evans
CERN 88-01 11 March 1988 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATOR SCHOOL Third John Adams Memorial Lecture THE PROTON-ANTIPROTON COLLIDER Lecture delivered at CERN on 25 November 1987 Lyndon Evans GENEVA 1988 ABSTRACT The subject of this lecture is the CERN Proton-Antiproton (pp) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first pp collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. RN —Service d'Information Scientifique-RD/757-3000-Mars 1988 iii CONTENTS Page 1. INTRODUCTION 1 2. BEAM COOLING l 3. HISTORICAL DEVELOPMENT OF THE pp COLLIDER CONCEPT 2 4. THE SPS AS A COLLIDER 4 4.1 Operation 4 4.2 Performance 5 5. IMPACT OF EARLIER CERN DEVELOPMENTS 5 6. PROPHETS OF DOOM 7 7. IMPACT ON THE WORLD SCENE 9 8. CONCLUDING REMARKS: THE FUTURE OF THE pp COLLIDER 9 REFERENCES 10 Plates 11 v 1. INTRODUCTION The subject of this lecture is the CERN Proton-Antiproton (pp) Collider and let me say straightaway that some of you might find that this talk is rather polarized towards the Super Proton Synchrotron (SPS). In fact, the pp project was a CERN-wide collaboration 'par excellence'. However, in addition to John Adams' close involvement with the SPS there is a natural tendency for me to remain within my own domain of competence. -
Discovery Machines
DISCOVERY MACHINES 2019 was noteworthy for being the start of Long Shutdown 2 (LS2) of the CERN accelerator complex. Across all the machines, teams began the tasks of maintaining or renovating numerous items of equipment or replacing them with new, innovative systems. These major upgrades are being carried out in preparation for the third run of the LHC and for the High-Luminosity LHC (HL-LHC). What’s more, they will benefit the users of all the accelerators as many aspects of the work are being carried out as part of the LHC Injectors Upgrade (LIU) project. ISOLDE The front-ends for the LINEAR ACCELERATOR 4 (LINAC4) isotope separator targets have been built, tested Linac4 is now connected to the LHC and partially installed. accelerator chain. A nominal beam The new Offline2 test of 160 MeV reached the Linac4 beam facility, equipped with dump in October. a laser ion source, was (CERN-PHOTO-201704-093-27) commissioned. (CERN-PHOTO-201911-394-28) PS BOOSTER (PSB) Seventy of the 215 metres of the PSB’s beam lines have been removed to allow the installation of new equipment. More than 60 magnets have been renovated or replaced in the accelerator. A new RF acceleration system has been installed. After LS2, the energy of the PS Booster will increase from 1.4 to 2 GeV. (CERN-PHOTO-201906-149-11) 22 | CERN SUPER PROTON SYNCHROTRON (SPS) LARGE HADRON COLLIDER (LHC) A new RF acceleration system is under The electrical insulation of the diodes has construction. The SPS beam dump is being been completed on 94% of the accelerator’s replaced. -
Charged Pion Spectra in Proton–Carbon Interactions at 31 Gev/C
XIII International Workshop on Neutrino Factories, Super beams and Beta beams (NUFACT11) IOP Publishing Journal of Physics: Conference Series 408 (2013) 012048 doi:10.1088/1742-6596/408/1/012048 Charged pion spectra in proton–carbon interactions at 31 GeV/c Magdalena Zofia Posiada la on behalf of the NA61/SHINE Collaboration Faculty of Physics, University of Warsaw, Ho˙za69, 00-681 Warsaw, Poland E-mail: [email protected] Abstract. The NA61/SHINE experiment at CERN SPS measured charged pion spectra in p+C interactions at 31 GeV/c. These measurements are necessary to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. Presented analysis was based on the data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of nuclear interaction length. Three different methods which were used in order to obtain π+ and π− spectra are introduced. Differential cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in ten intervals of the laboratory polar angle up to 420 mrad. 1. Introduction The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) is a large acceptance hadron spectrometer located in the North Area H2 beam line of the European Centre for Nuclear Research (CERN) in Geneva. The experiment uses beams from the Super Proton Synchrotron (SPS). The NA61/SHINE experiment combines a rich physics program in three different fields: auxiliary measurements for neutrino experiments, cosmic-ray simulations, and the behavior of strongly interacting matter at high density (see: [1, 2, 3] for details). -
ATLAS Experiment 1 ATLAS Experiment
ATLAS experiment 1 ATLAS experiment Large Hadron Collider (LHC) LHC experiments ATLAS A Toroidal LHC Apparatus CMS Compact Muon Solenoid LHCb LHC-beauty ALICE A Large Ion Collider Experiment TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation LHCf LHC-forward MoEDAL Monopole and Exotics Detector At the LHC LHC preaccelerators p and Pb Linear accelerators for protons (Linac 2) and Lead (Linac 3) (not marked) Proton Synchrotron Booster PS Proton Synchrotron SPS Super Proton Synchrotron ATLAS (A Toroidal LHC Apparatus) is one of the seven particle detector experiments (ALICE, ATLAS, CMS, TOTEM, LHCb, LHCf and MoEDAL) constructed at the Large Hadron Collider (LHC), a new particle accelerator at the European Organization for Nuclear Research (CERN) in Switzerland. ATLAS is 44 metres long and 25 metres in diameter, weighing about 7,000 tonnes. The project is led by Fabiola Gianotti and involves roughly 2,000 scientists and engineers at 165 institutions in 35 countries.[1][2] The construction was originally scheduled to be completed in June 2007, but was ready and detected its first beam events on 10 September 2008.[3] The experiment is designed to observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators and might shed light on new theories of particle physics beyond the Standard Model. The ATLAS collaboration, the group of physicists building the detector, was formed in 1992 when the proposed EAGLE (Experiment for Accurate Gamma, Lepton and Energy Measurements) and ASCOT (Apparatus with Super Conducting Toroids) collaborations merged their efforts into building a single, general-purpose particle detector for the Large Hadron Collider.[4] The design was a combination of those two previous designs, as well as the detector research and development that had been done for the Superconducting Supercollider. -
The Last 20 Years at the CERN SPS
Eur. Phys. J. Special Topics 229, 3507{3516 (2020) c The Author(s) 2020 THE EUROPEAN https://doi.org/10.1140/epjst/e2020-000090-9 PHYSICAL JOURNAL SPECIAL TOPICS Review Phase diagram of strongly interacting matter: the last 20 years at the CERN SPS Marek Gazdzickia Geothe-University Frankfurt am Main, D-60438 Frankfurt, Germany Jan Kochanowski University, PL-25406 Kielce, Poland Received 16 May 2020 / Accepted 30 October 2020 Published online 21 December 2020 Abstract. Twenty years ago, on February 10, 2000, the CERN Director General Luciano Maiani announced: The combined data coming from the seven experiments on CERN's Heavy Ion programme have given a clear picture of a new state of matter. This result verifies an important prediction of the present theory of fundamental forces between quarks. This report briefly reviews studies of the phase diagram of strongly interacting matter with relativistic nuclear collisions at the CERN Super Proton Synchrotron which followed the CERN's press release on the quark-gluon plasma discovery. An attempt to formulate priori- ties for future measurements at the CERN SPS closes the paper. The report is dedicated to David Blaschke who celebrated his 60th birth- day in 2019. David's contribution to the studies presented here was very significant. 1 Introduction The report is organized along Karl Popper's view of scientific method: PS1 ! TT 1 ! EE1 ! PS2 :::; (1) where PS1 is an initial problem situation, TT 1 and EE1 stand for tentative theories and error elimination, respectively, and PS2 is a resulting new problem situation. The problem situation emerged after the quark-gluon plasma discovery at the CERN SPS is presented in Section 2.