When the Brain Switches to Standby

Total Page:16

File Type:pdf, Size:1020Kb

When the Brain Switches to Standby FOCUS_Sleep High-tech nightcap: Researchers use more than 100 electrodes to record the electrical currents on the surface of the head while a subject sleeps. This brain activity is used to generate a sleep profile. 32 MaxPlanckResearch 4 | 16 When the Brain Switches to Standby People who haven’t gotten enough sleep often see the world as a fairly sad place. If their tiredness lasts for weeks or even months, their dark mood may become chronic and develop into depression. Conversely, depression is frequently also associated with severe sleep disorders. Axel Steiger and his team at the Max Planck Institute of Psychiatry in Munich are studying the connection between disturbed sleep and depression. To do this, they measure human brain activity in the sleep lab. TEXT CATARINA PIETSCHMANN Photo: Denise Vernillo FOCUS_Sleep 1 Wakefulness 2 Non-REM sleep 3 REM sleep EMG EEG Delta Theta Beta & Gamma EEG spectrum 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Frequency (Hertz) Frequency (Hertz) Frequency (Hertz) Top Measuring mouse sleep: While awake (column 1 ), mice move around a lot, so their muscles are more frequently active. The graph shows the electrical signals from their neck muscles (electromyograph; top). The neurons in their brain fire in different rhythms and across a broad range of frequencies (middle and bottom). In non-REM sleep (column 2), the skeletal muscles become inactive (top). Brain activity oscillates with high amplitudes but low frequency (delta waves; middle and bottom). In REM sleep (column 3), the muscle tones are almost flat (top) and theta rhythms predominate in the brain (middle and bottom). Opposite page In the sleep lab of the Max Planck Institute of Psychiatry, Michael Czisch records the subject’s brain activity in an MRI scanner. This device makes the activity of the sleeping brain visible to scientists. tress at work, relationship is- Sleep Medicine at the Max Planck Insti- al environment for his research. He and sues or moving to another tute of Psychiatry in Munich. his team study the connection between city can literally rob people of The long-standing clinic, which fo- sleep patterns and nocturnal hormone their sleep. According to the cuses on stress-related complaints such release in depression. While the volun- Robert Koch Institute, one as depression, sleep disorders and anx- teers spend a night in the sleep lab, the outS of every three German citizens has iety, was founded by Emil Kraepelin in scientists measure the electrical impuls- suffered from a sleep disorder at some 1917 as the German Research Institute es of their brain and muscles, record stage in their life. In most cases, sleep for Psychiatry, and became a member their eye movements and regularly take patterns return to normal once the of the Kaiser Wilhelm Society in 1924. small blood samples to assess the levels stressful event or issue has passed. How- It contains five wards with a total of of certain hormones. ever, when such symptoms persist for 120 beds, a day clinic, a number of spe- The researchers then use the wave weeks or months, it is important to cial outpatient clinics and several re- patterns from the electroencephalo- consult a doctor. search institutions, all under one roof. gram (EEG) along with the other mea- Poor sleep can have physical or surements to extrapolate the sequence mental causes. “Disturbed sleep can be SNOOZING IN THE NAME of the different sleep stages, also both a cause and a consequence of de- OF SCIENCE known as the sleep profile, or hypno- pression – in other words, it is both a gram. This is a step-like diagram con- symptom and a risk factor. It leads to a Patients can voluntarily choose to take sisting of several phases: At the start of huge increase in the risk of depression,” part in scientific studies – for Steiger, the night, the subject gradually falls explains Axel Steiger, Senior Physician who has led the Sleep Endocrinology into a deeper sleep, and the amplitude and Head of the Outpatient Clinic for Research Group since 1991, it is an ide- of the EEG waves increases as this oc- Graphic: D. Kumar & M. Kimura (2014) 34 MaxPlanckResearch 4 | 16 curs. The EEG amplitude is low when continual stream of data down the characterized by increased blood pres- the subject is awake or in REM sleep, wires to a computer. This allows the re- sure and pulse, while the skeletal mus- and high during deep sleep, the lowest searchers to look into the cerebral cor- cles remain fully relaxed. Four, five or rung on the ladder. tex and even deeper parts, such as the sometimes even six or more cycles of The Institute also uses high-density limbic system, the seat of the emotions. deep sleep and REM sleep per night are EEG (HD-EEG), the newest technology Schematic representations of the typical. Deep sleep is a component of in this area, to evaluate brain activity. hypnogram show clear differences be- non-REM sleep. In healthy young peo- Subjects wear a kind of “nightcap” fit- tween REM (rapid eye movement) ple, it is most pronounced at the start ted to the head with 118 fine electrodes sleep, when dreaming typically occurs, of the night and occurs only rarely or – normally there are ten. While they and non-REM sleep. REM sleep appears not at all in the early morning. slumber in the soundproof room, their as a stage below the waking state but Directly after falling asleep, most brain, facial muscles and heart send a clearly above that of deep sleep. It is people sleep especially deeply for about LEARNING WHILE ASLEEP While asleep, the body is at rest only on the outside, be- sleep for up to 17 hours a day. This is due to the enormous cause sleep is an active process: metabolism is running at growth and maturing processes that occur in the brain full speed, particularly in terms of growth and regenera- during this time. Never again do humans learn so much as tion, detoxification and tissue repair. Some parts of the in the first weeks and months of life. Three- to five-year- brain are also highly active, processing the stimuli that the olds can manage on 10 to 13 hours, while seven to eight brain absorbed during the day, separating important infor- hours is generally enough for 18- to 78-year-olds. The sleep- mation from irrelevant details, and moving memories from wake cycle also changes. Adults generally sleep only at short-term to long-term storage. That’s why good sleep night and for a single stretch, while newborns take a num- promotes good memory. ber of shorter sleeps over the course of a day. By the age of The need for sleep decreases continuously during the one, most children already sleep through the night, and course of a lifetime. In the first three months of life, infants their daytime sleep decreases noticeably. Graphic: D. Kumar & M. Kimura (2014) Photo: Denise Vernillo 4 | 16 MaxPlanckResearch 35 Axel Steiger has devoted nearly his entire leasing hormone (CRH). In the event Kimura, head of the Sleep and Teleme- research life to sleep. Among other things, of an infection, for example, CRH in- try Core Unit in the Institute, used ro- he is Head of the Outpatient Clinic for Sleep directly stimulates the release of corti- dent models in which specific genes Medicine at the Max Planck Institute of Psychiatry. There, various disorders are sol in the adrenal glands. The cortisol were intentionally switched off or acti- diagnosed and treated, such as nighttime then activates the immune system. vated in order to study their exact func- sleep and movement disorders, unusual sleep The same thing happens in the event tion. Animals that have been stressed behaviors (such as sleepwalking), and night of exam stress or a heated argument. for extended periods, as well as those terrors and nightmares. Once the situation has passed, the that have been genetically modified so stress hormones come back into bal- that their brains produce more CRH 90 minutes. This is followed by the ance. At this stage, the cortisol already than usual, fell faster and more fre- first REM period. “Depressed patients, circulating slows CRH release and quently into a REM episode when on the other hand, progress to REM hence its own production. asleep. This makes them the ideal ani- sleep faster, sometimes after just ten mal models for depression. minutes,” says Steiger. In addition, the HORMONE INTERACTION But are there really depressed mice? first REM period is generally longer in AS A FOCUS OF RESEARCH “Of course we don’t know whether these patients. they really feel like human patients, If we compare patterns of hormone “We believe that this feedback mecha- but their sleep phenotype is certainly secretion with sleep profiles, it is nota- nism is dysfunctional in patients with similar to that of depressed patients,” ble that less growth hormone is re- depression, probably because the corti- says Kimura. In the “forced swim” test, leased in depressed patients than in sol receptors in the brain that stop the for example, whereas healthy mice healthy subjects. The cortisol values are release of the hormone in healthy indi- swim around and try to struggle also different, climbing much higher in viduals are faulty,” explains Steiger. through longer, “depressed” mice give many patients, especially in the second When depression subsides, the cortisol up sooner. And although mice gener- half of the night. levels initially fall, while the sleep pat- ally wake more frequently and seldom Cortisol is an important stress hor- tern remains disturbed for a time.
Recommended publications
  • Central Respiratory Circuits That Control Diaphragm Function in Cat Revealed by Transneuronal Tracing
    CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING by James H. Lois B. S. in Neuroscience, University of Pittsburgh, 2006 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of M. S. in Neuroscience University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by James H. Lois It was defended on July 30, 2008 and approved by J. Patrick Card, PhD Linda Rinaman, PhD Alan Sved, PhD Thesis Advisor: J. Patrick Card, PhD ii Copyright © by James H. Lois 2008 iii CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING James H. Lois, M. S. University of Pittsburgh, 2008 Previous transneuronal tracing studies in the rat and ferret have identified regions throughout the spinal cord, medulla, and pons that are synaptically linked to the diaphragm muscle; however, the extended circuits that innervate the diaphragm of the cat have not been well defined. The N2C strain of rabies virus has been shown to be an effective transneuronal retrograde tracer of the polysynaptic circuits innervating a single muscle. Rabies was injected throughout the left costal region of the diaphragm in the cat to identify brain regions throughout the neuraxis that influence diaphragm function. Infected neurons were localized throughout the cervical and thoracic spinal cord with a concentration of labeling in the vicinity of the phrenic nucleus where diaphragm motoneurons are known to reside. Infection was also found throughout the medulla and pons particularly around the regions of the dorsal and ventral respiratory groups and the medial and lateral reticular formations but also in several other areas including the caudal raphe nuclei, parabrachial nuclear complex, vestibular nuclei, ventral paratrigeminal area, lateral reticular nucleus, and retrotrapezoid nucleus.
    [Show full text]
  • Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain
    THE JOURNAL OF COMPARATIVE NEUROLOGY 436:430–455 (2001) Basic Organization of Projections From the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain HONG-WEI DONG,1,2 GORICA D. PETROVICH,3 ALAN G. WATTS,1 AND LARRY W. SWANSON1* 1Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520 2Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shannxi 710032, China 3Department of Psychology, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus.
    [Show full text]
  • Brain-Implantable Biomimetic Electronics As the Next Era in Neural Prosthetics
    Brain-Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics THEODORE W. BERGER, MICHEL BAUDRY, ROBERTA DIAZ BRINTON, JIM-SHIH LIAW, VASILIS Z. MARMARELIS, FELLOW, IEEE, ALEX YOONDONG PARK, BING J. SHEU, FELLOW, IEEE, AND ARMAND R. TANGUAY, JR. Invited Paper An interdisciplinary multilaboratory effort to develop an im- has been developed—silicon-based multielectrode arrays that are plantable neural prosthetic that can coexist and bidirectionally “neuromorphic,” i.e., designed to conform to the region-specific communicate with living brain tissue is described. Although the final cytoarchitecture of the brain. When the “neurocomputational” and achievement of such a goal is many years in the future, it is proposed “neuromorphic” components are fully integrated, our vision is that that the path to an implantable prosthetic is now definable, allowing the resulting prosthetic, after intracranial implantation, will receive the problem to be solved in a rational, incremental manner.Outlined electrical impulses from targeted subregions of the brain, process in this report is our collective progress in developing the underlying the information using the hardware model of that brain region, and science and technology that will enable the functions of specific communicate back to the functioning brain. The proposed prosthetic brain damaged regions to be replaced by multichip modules con- microchips also have been designed with parameters that can be sisting of novel hybrid analog/digital microchips. The component optimized after implantation, allowing each prosthetic to adapt to a microchips are “neurocomputational” incorporating experimen- particular user/patient. tally based mathematical models of the nonlinear dynamic and adaptive properties of biological neurons and neural networks.
    [Show full text]
  • Central and Peripheral Peptides Regulating Eating
    REVIEW Central and Peripheral Peptides Regulating Eating Behaviour and Energy Homeostasis in Anorexia Nervosa and Bulimia Nervosa: A Literature Review Alfonso Tortorella1, Francesca Brambilla2, Michele Fabrazzo1, Umberto Volpe1, Alessio Maria Monteleone1, Daniele Mastromo1 & Palmiero Monteleone1,3* 1Department of Psychiatry, University of Naples SUN, Napoli, Italy 2Department of Psychiatry, San Paolo Hospital, Milan, Italy 3Department of Medicine and Surgery, University of Salerno, Salerno, Italy Abstract A large body of literature suggests the occurrence of a dysregulation in both central and peripheral modulators of appetite in patients with anorexia nervosa (AN) and bulimia nervosa (BN), but at the moment, the state or trait-dependent nature of those changes is far from being clear. It has been proposed, although not definitively proved, that peptide alterations, even when secondary to malnutrition and/or to aberrant eating behaviours, might contribute to the genesis and the maintenance of some symptomatic aspects of AN and BN, thus affecting the course and the prognosis of these disorders. This review focuses on the most significant literature studies that explored the physiology of those central and peripheral peptides, which have prominent effects on eating behaviour, body weight and energy homeostasis in patients with AN and BN. The relevance of peptide dysfunctions for the pathophysiology of eating disorders is critically discussed. Copyright © 2014 John Wiley & Sons, Ltd and Eating Disorders Association. Received 2 April 2014; Revised 14 May 2014; Accepted 15 May 2014 Keywords anorexia nervosa; bulimia nervosa; eating disorders; neuroendocrinology; feeding regulators; central peptides; peripheral peptides *Correspondence Palmiero Monteleone, MD, Department of Medicine and Surgery, University of Salerno, Via S.
    [Show full text]
  • Understanding Eating Disorders
    Hormones and Behavior 50 (2006) 572–578 www.elsevier.com/locate/yhbeh Understanding eating disorders Per Södersten ⁎, Cecilia Bergh, Michel Zandian Karolinska Institutet, Section of Applied Neuroendocrinology, Center for Eating Disorders, AB Mando, Novum, S-141 57 Huddinge, Sweden Received 16 May 2006; revised 20 June 2006; accepted 21 June 2006 Available online 4 August 2006 Abstract The outcome in eating disorders remains poor and commonly used methods of treatment have little, if any effect. It is suggested that this situation has emerged because of the failure to realize that the symptoms of eating disorder patients are epiphenomena to starvation and the associated disordered eating. Humans have evolved to cope with the challenge of starvation and the neuroendocrine mechanisms that have been under this evolutionary pressure are anatomically versatile and show synaptic plasticity to allow for flexibility. Many of the neuroendocrine changes in starvation are responses to the externally imposed shortage of food and the associated neuroendocrine secretions facilitate behavioral adaptation as needed rather than make an individual merely eat more or less food. A parsimonious, neurobiologically realistic explanation why eating disorders develop and why they are maintained is offered. It is suggested that the brain mechanisms of reward are activated when food intake is reduced and that disordered eating behavior is subsequently maintained by conditioning to the situations in which the disordered eating behavior developed via the neural system for attention. In a method based on this framework, patients are taught how to eat normally, their physical activity is controlled and they are provided with external heat. The method has been proven effective in a randomized controlled trial.
    [Show full text]
  • Neuroscience-Inspired Dynamic Architectures
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Neuroscience-Inspired Dynamic Architectures Catherine Dorothy Schuman University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons Recommended Citation Schuman, Catherine Dorothy, "Neuroscience-Inspired Dynamic Architectures. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Catherine Dorothy Schuman entitled "Neuroscience-Inspired Dynamic Architectures." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer Science. J. Douglas Birdwell, Major Professor We have read this dissertation and recommend its acceptance: Mark E. Dean, Tsewei Wang, Itamar Arel, Bruce MacLennan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Neuroscience-Inspired Dynamic Architectures Catherine Dorothy Schuman University of Tennessee - Knoxville, [email protected] This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange.
    [Show full text]
  • Kyle Lynn Gobrogge, Ph.D. (P): (617) 485-6861 | (E): [email protected]
    2 Cummington Mall, Boston, MA 02215 Kyle Lynn Gobrogge, Ph.D. (P): (617) 485-6861 | (E): [email protected] Academic Appointments Research Recognition Lecturer, Undergraduate Program in Neuroscience Trainee Development Research Award 2016 Boston University | 2019 – Present Society for Neuroscience • Instructor, Principles of Neuroscience Lab | Undergraduate • Instructor , Molecular and Cell Biology Lab | Undergraduate Postdoctoral Research Award | 2016 Tufts University School of Medicine Part Time Lecturer, Psychology Department Northeastern University | 2017 – Present Graduate Student Research Award | 2016 • Instructor, Abnormal Psychology | Undergraduate Office of Research, Florida State University • Instructor, Drugs and Behavior | Undergraduate • Instructor, Personality Psychology | Undergraduate • Instructor, Developmental Psychology | Undergraduate New Investigator Award | 2009 Society for Behavioral Neuroendocrinology Adjunct Assistant Professor, Human Development Program European Science Foundation Emerging Hellenic College Holy Cross | 2017 – Present • Instructor, Research Methods | Undergraduate Investigator Award | 2009 • Instructor, Neuroscience | Undergraduate • Instructor, Lifespan | Undergraduate Postdoctoral Research Poster Award | 2008 • Instructor, Statistics | Undergraduate International Society for Research on Aggression Instructor, Behavioral Neuroscience Yale University | Summer 2017 Travel Award | 2008 Society for Behavioral Neuroendocrinology Postdoctoral Research Fellow, Behavioral Neuroscience Boston College | 2016
    [Show full text]
  • The Neuromodulatory Basis of Emotion
    1 The Neuromodulatory Basis of Emotion Jean-Marc Fellous Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California The Neuroscientist 5(5):283-294,1999. The neural basis of emotion can be found in both the neural computation and the neuromodulation of the neural substrate mediating behavior. I review the experimental evidence showing the involvement of the hypothalamus, the amygdala and the prefrontal cortex in emotion. For each of these structures, I show the important role of various neuromodulatory systems in mediating emotional behavior. Generalizing, I suggest that behavioral complexity is partly due to the diversity and intensity of neuromodulation and hence depends on emotional contexts. Rooting the emotional state in neuromodulatory phenomena allows for its quantitative and scientific study and possibly its characterization. Key Words: Neuromodulation, Emotion, Affect, Hypothalamus, Amygdala, Prefrontal the behavior1 that this substrate mediates. The Introduction neuromodulation of 'cognitive centers' results in phenomena pertaining to emotional influences of The scientific study of the neural basis of cognitive processing. Neuromodulations of memory emotion is an active field of experimental and structures explain the influence of emotion on theoretical research (See (1,2) for reviews). Partly learning and recall; the neuromodulation of specific because of a lack of a clear definition (should it reflex pathways explains the influence of the exists) of what emotion is, and probably because of emotional state on elementary motor behaviors, and its complexity, it has been difficult to offer a so forth... neuroscience framework in which the influence of The instantaneous pattern of such modulations emotion on behavior can be studied in a (i.e.
    [Show full text]
  • The Neuroendocrinology of Reproduction: an Overview1
    BIOLOGY OF REPRODUCTION 20, 111-127 (1979) The Neuroendocrinology of Reproduction: An Overview1 ROGER A. GORSKI Department of Anatomy and Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90024 Downloaded from https://academic.oup.com/biolreprod/article/20/1/111/4559056 by guest on 27 September 2021 INTRODUCTION isms, it may be useful to divide the reproductive Each of the preceding speakers in this process into several distinct phases (Table symposium has already reviewed one important 1). A very early step in the reproductive process facet of the neuroendocrinology of reproduc­ is the differentiation of the two individuals tion. Therefore, it is clearly unnecessary to which will eventually be capable of reproducing present a thorough review of this entire field when mature. Although the concept of the and my approach will be to attempt to present sexual differentiation of the reproductive one overall perspective of the role of the brain system is well-known for the internal reproduc­ in the reproductive process while attempting to tive organs and the external genitalia (Wilson, emphasize that which has not already been dis­ 1978), this same concept applies to brain cussed. At best, this discussion will complement function as well. With respect to the peripheral the other presentations, which together do reproductive system, remember that for a form a rather complete overview of the neuro­ period during development, the male and endocrinology of reproduction. To begin with, female are morphologically indistinguishable. it will be helpful to consider the role of the After subsequent differntiation of the gonadal brain in the reproductive process in very anlage into testis or ovary, the secretory activity general terms.
    [Show full text]
  • State Markers of Depression in Sleep EEG: Dependency on Drug and Gender in Patients Treated with Tianeptine Or Paroxetine
    Neuropsychopharmacology (2003) 28, 348–358 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org State Markers of Depression in Sleep EEG: Dependency on Drug and Gender in Patients Treated with Tianeptine or Paroxetine 1,2 1 1 1 1 1 ,1 1 H Murck , T Nickel ,HKu¨nzel , IA Antonijevic , J Schill , A Zobel , A Steiger* , A Sonntag and 1 F Holsboer 1Max Planck Institute of Psychiatry, Munich, Germany; 2Laxdale Ltd., Stirling, UK Tianeptine enhances while paroxetine inhibits serotonin reuptake into neurons; however, both show an antidepressive action. A subgroup of 38 depressed patients from a drug trial comparing the efficacy of tianeptine with that of paroxetine was studied with regard to their effects on sleep regulation, especially in relation to treatment response. We recorded sleep EEGs at day 7 and day 42 after the start of treatment with either compound, which allows measurement of changes due to the antidepressive medication in relation to the duration of treatment. Spectral analysis of the non-REM sleep EEG revealed a strong decline in the higher sigma frequency range (14– 16 Hz) in male treatment responders independent of medication, whereas nonresponders did not show marked changes in this frequency range independent of gender. The patients receiving paroxetine showed less REM sleep and more intermittent wakefulness compared to the patients receiving tianeptine. REM density after 1 week of treatment was a predictor of treatment response in the whole sample. Psychopathological features with regard to the score in single items of the HAMD revealed predictive markers for response, some of which were opposite in the gender groups, especially those related to somatic anxiety.
    [Show full text]
  • Cerebellar Control of Defense Reactions Under Orexin-Mediated Neuromodulation As a Model of Cerebellohypothalamic Interaction
    Manuscript submitted to: Volume 1, Issue 1, 89-95. AIMS Neuroscience DOI: 10.3934/Neuroscience.2014.1.89 Received date 1 April 2014, Accepted date 4 June 2014, Published date 10 June 2014 Review article Cerebellar Control of Defense Reactions under Orexin-mediated Neuromodulation as a Model of Cerebellohypothalamic Interaction Masao Ito 1,* and Naoko Nisimaru 1,2 1 RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 315-0198, Japan 2 Department of Physiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama,Yufu, Oita 879-5593, Japan * Correspondence: Email: [email protected]; Tel: +81-48467-6984: Fax: +81-48467-6975. Abstract: Recent evidence has indicated that, when an animal is exposed to harmful stimuli, hypothalamic orexinergic neurons are activated via the amygdala and in turn tune the neuronal circuits in the spinal cord, brainstem, and an area of the cerebellum (folium-p of the flocculus) by neuromodulation. The animal would then initiate “defense reactions” composed of complex movements and associated cardiovascular responses. To investigate neuronal mechanisms of the defense reactions, Nisimaru et al. (2013) analyzed cardiovascular responses induced by an electric foot shock stimulus to a rabbit and found two major effects. One is redistribution of arterial blood flow from visceral organs to active muscles, and the other is a modest increase in blood pressure. Kainate-induced lesions of folium-p impaired these two effects. Moreover, folium-p Purkinje cells were shown to project to the parabrachial nucleus, one of the major cardiovascular centers in the brainstem. These data indicate that folium-p Purkinje cells regulate cardiovascular defense reactions via parabrachial nucleus under orexin-mediated neuromodulation.
    [Show full text]
  • The Role of the Gut Microbiome, Immunity, and Neuroinflammation
    nutrients Review The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders Michael J. Butler 1,† , Alexis A. Perrini 2,† and Lisa A. Eckel 2,* 1 Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; [email protected] 2 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-850-644-3480 † Co-first authors. Abstract: There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroin- flammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing Citation: Butler, M.J.; Perrini, A.A.; novel, highly effective treatments for these often intractable and unremitting eating disorders.
    [Show full text]