State Markers of Depression in Sleep EEG: Dependency on Drug and Gender in Patients Treated with Tianeptine Or Paroxetine

Total Page:16

File Type:pdf, Size:1020Kb

State Markers of Depression in Sleep EEG: Dependency on Drug and Gender in Patients Treated with Tianeptine Or Paroxetine Neuropsychopharmacology (2003) 28, 348–358 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org State Markers of Depression in Sleep EEG: Dependency on Drug and Gender in Patients Treated with Tianeptine or Paroxetine 1,2 1 1 1 1 1 ,1 1 H Murck , T Nickel ,HKu¨nzel , IA Antonijevic , J Schill , A Zobel , A Steiger* , A Sonntag and 1 F Holsboer 1Max Planck Institute of Psychiatry, Munich, Germany; 2Laxdale Ltd., Stirling, UK Tianeptine enhances while paroxetine inhibits serotonin reuptake into neurons; however, both show an antidepressive action. A subgroup of 38 depressed patients from a drug trial comparing the efficacy of tianeptine with that of paroxetine was studied with regard to their effects on sleep regulation, especially in relation to treatment response. We recorded sleep EEGs at day 7 and day 42 after the start of treatment with either compound, which allows measurement of changes due to the antidepressive medication in relation to the duration of treatment. Spectral analysis of the non-REM sleep EEG revealed a strong decline in the higher sigma frequency range (14– 16 Hz) in male treatment responders independent of medication, whereas nonresponders did not show marked changes in this frequency range independent of gender. The patients receiving paroxetine showed less REM sleep and more intermittent wakefulness compared to the patients receiving tianeptine. REM density after 1 week of treatment was a predictor of treatment response in the whole sample. Psychopathological features with regard to the score in single items of the HAMD revealed predictive markers for response, some of which were opposite in the gender groups, especially those related to somatic anxiety. Changes in REM density were inversely correlated to the changes in HAMD in the paroxetine, but not the tianeptine, group. Our data suggest the importance of taking gender into account in the study of the biological effects of drugs. The study further points to the importance of the higher sigma frequency range in the sleep EEG of non-REM sleep and REM density as a marker of treatment response. Neuropsychopharmacology (2003) 28, 348–358. doi:10.1038/sj.npp.1300029 INTRODUCTION cological treatment (Thase et al, 1994; Buysse et al, 1999a) REM density decreases. In drug-free depressed patients, an Most studies that investigated the effect of antidepressants increased REM density is a state marker of depression upon sleep agreed that tricyclic antidepressants and (Lauer et al, 1991). selective serotonin reuptake inhibitors (SSRIs) suppress Concerning changes in non-REM sleep the actions of rapid eye movement (REM) sleep (Sharpley and Cowen, antidepressants are inconsistent. For example, some in- 1995). Some antidepressive substances lack a suppressive crease slow-wave sleep (SWS) as tricyclic antidepressants effect on REM sleep, like trimipramine (Steiger et al, 1989) like amitriptyline and trimipramine, others decrease it, as nefazodone (Vogel et al, 1998) and bupropione (Nofzinger SSRIs like fluoxetine and paroxetine (Sharpley and Cowen, et al, 1995). However, other studies show that early changes of REM sleep parameters, especially REM latency and 1995). Besides these differences related to different drugs, gender also has to be taken into account for the percentage amount of REM during the sleep period time, interpretation of sleep-EEG characteristics. Gender differ- might predict treatment outcome with substances, which ences exist in the sleep EEG of depressed patients under have an accute effect on REM sleep like amitriptyline baseline conditions as a higher incidence of EEG delta (Kupfer et al, 1981; Gillin et al, 1978) and clomipramine activity (Reynolds et al, 1990), more delta and beta EEG (Ho¨chli et al, 1986). Furthermore, changes in REM sleep, activity of a higher amplitude, especially in the right especially REM density, occur in the course of antidepres- hemisphere (Armitage et al, 1995a) or power of the delta- sive treatment with fluoxetine (Buysse et al, 1999a) leading and sigma-frequency range in females (Antonijevic et al, to an increase in REM density, whereas under nonpharma- 2000a). A challenge with growth-hormone-releasing hor- mone (GHRH) led to an increase in sleep efficiency and *Correspondence: Dr A Steiger, Max Planck Institute of Psychia- stage 2 sleep in males, but a decrease in female healthy and try, Kraepelinstrasse 10, D-80804 Munich, Germany, Tel: +49 depressed subjects (Antonijevic et al, 2000a). Recently a 8930622236, Fax: +49 89 30622 548, E-mail: [email protected] differential efficacy for SSRIs compared to tricyclics in men Received 19 December 2001; revised 17 June 2002; accepted 20 June compared to women has been described (Kornstein et al, 2002 2000). With respect to the possible interactions between the Markers of depression in sleep EEG H Murck et al 349 type of drug and gender, we performed a study on the effect treatment without interference with depression was allowed. of two drugs with opposite actions on serotoninergic The patients were not treated with depot neuroleptics, neurotransmission, that is, paroxetine as an SSRI and fluoxetine and irreversible monoanime-oxidase inhibitors tianeptine as a serotonin reuptake enhancer (Mocaer et al, for at least 8 weeks prior to admission, and patients were 1988). This property might correlate with the opposing drug-free for a minimum of 1 week prior to the study. action of tianeptine and the SSRI fluoxetine on hippocampal Patients received either 20 mg paroxetine or 37.5 mg electrical activity (Shakesby et al, 2002). Furthermore, tianeptine beginning at D1. At day 21 (D21), the same dose tianeptine decreases stress-induced HPA-axis activity in a or double the dose, depending on treatment response, was similar way as desipramine, but different from paroxetine administered until day 42 (D42). After D7 and at D42, an (Delbende et al, 1994; Connor et al, 2000). Despite this investigation of the sleep EEG was done. The assessment of diverging effect of the tianeptine and SSRIs, they have some psychopathology was done on D1, D7, D14, D21, D28, D35 properties in common as tianeptine and the SSRI sertraline and D42; we give here only the data of the 38 patients showed similar effects in the Behavioral Despair Test and in included in the sleep-EEG analysis at baseline (D1) and the antagonizing the behavioral effect of olfactory bulbectomy days of the sleep-EEG examinations (D7 and D42). (Kelly and Leonard, 1994). At the cellular level, the effect of After a night of accommodation, the subjects underwent a tianeptine was similar to the tricyclic antidepressants polysomnographic examination. The subjects were allowed imipramine, amitriptyline and desipramine and to the SSRI to sleep between 23:00 and 7:00 h, which was also the time, fluoxetine in inhibiting glucocorticoid-mediated gene tran- when the light was turned off and the sleep recordings were scription (Budziszewska et al, 2000). made. The recordings consisted of two EEGs (C3-A2, C4-A1; We performed the study in a subgroup of patients taking time constant 0.3 s, low-pass filtering 70 Hz), vertical and part in a study comparing clinical and endocrine para- horizontal electro-oculograms (EOG), an electromyogram meters in patients with depression (Nickel et al, in press). (EMG) and an electrocardiogram (ECG). The EEG signals The subjects from this study were examined in the sleep were filtered (EEG: high-pass 0.53 Hz, À3 dB; low-pass laboratory for assessment of the changes in the sleep EEG in 70 Hz, À3 dB; À12 dB octave, band-stop between 42 and the course of the treatment. The aim was to define common 62 Hz, À3 dB) and transmitted by an optical fiber system to changes in the sleep EEG of depressed patients in the course the polygraph (Schwartzer, ED 24). By means of a personal of treatment despite different modes of action of the computer, EEG signals were additionally sampled by an antidepressant drugs, that is, to investigate which changes 8-bit analog-to-digital converter at a sampling rate of in the sleep EEG might be correlated with a treatment 100 Hz and stored on disk for further spectral analysis. response independent of the type of medication. Sleep EEGs were rated visually according to standard criteria (Rechtschaffen and Kales, 1968) by an experienced rater who was blind to the study protocol. The parameters F MATERIALS AND METHODS used were: SOL sleep onset latency (sleep onset defined as the first epoch of 30 s containing stages 2, 3, 4 or REM In a double-blind protocol, we compared the effect of sleep) (min); time spent in each of the following sleep stages tianeptine vs paroxetine in 44 patients with an episode of during time in bed: non-REM stage 2, SWS F slow-wave major depression. This study was approved by the Ethics sleep (non-REM stages 3 and 4), REM; REM latency Committee for Human Experiments of the Bavarian Medical (interval from onset until the first epoch containing stage Council (Bayerische A¨ rztekammer). The patients were REM) (min); REM density (minÀ1) (the average ratio of 3-s hospitalized for evaluation and treatment of depression. mini-epochs of REM sleep including REMs to the total At initial evaluation, all had to meet the criteria for a major number of 3-s mini-epochs of REM sleep per minute); and depressive episode or bipolar I or II disorder (depressed) the duration of intermittent wakefulness (IW) (min). according to DSM-IV (American Psychiatric Association, Spectral analysis was initially performed on the distinct 1994) with a Hamilton depression (HAMD) score on the 21- frequency ranges delta (0.8–4.5 Hz), theta (4.5-8.0 Hz), alpha item HAMD scale 418. To exclude spontaneous remission, (8.0–11.8 Hz), sigma (11.8–15.2 Hz) and beta (15.2–19.0 Hz) the difference of the total HAMD score between selection and thereafter additionally in three smaller ranges covering and inclusion at day 1 (D1) had to be o6 points.
Recommended publications
  • Central Respiratory Circuits That Control Diaphragm Function in Cat Revealed by Transneuronal Tracing
    CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING by James H. Lois B. S. in Neuroscience, University of Pittsburgh, 2006 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of M. S. in Neuroscience University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by James H. Lois It was defended on July 30, 2008 and approved by J. Patrick Card, PhD Linda Rinaman, PhD Alan Sved, PhD Thesis Advisor: J. Patrick Card, PhD ii Copyright © by James H. Lois 2008 iii CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING James H. Lois, M. S. University of Pittsburgh, 2008 Previous transneuronal tracing studies in the rat and ferret have identified regions throughout the spinal cord, medulla, and pons that are synaptically linked to the diaphragm muscle; however, the extended circuits that innervate the diaphragm of the cat have not been well defined. The N2C strain of rabies virus has been shown to be an effective transneuronal retrograde tracer of the polysynaptic circuits innervating a single muscle. Rabies was injected throughout the left costal region of the diaphragm in the cat to identify brain regions throughout the neuraxis that influence diaphragm function. Infected neurons were localized throughout the cervical and thoracic spinal cord with a concentration of labeling in the vicinity of the phrenic nucleus where diaphragm motoneurons are known to reside. Infection was also found throughout the medulla and pons particularly around the regions of the dorsal and ventral respiratory groups and the medial and lateral reticular formations but also in several other areas including the caudal raphe nuclei, parabrachial nuclear complex, vestibular nuclei, ventral paratrigeminal area, lateral reticular nucleus, and retrotrapezoid nucleus.
    [Show full text]
  • Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain
    THE JOURNAL OF COMPARATIVE NEUROLOGY 436:430–455 (2001) Basic Organization of Projections From the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain HONG-WEI DONG,1,2 GORICA D. PETROVICH,3 ALAN G. WATTS,1 AND LARRY W. SWANSON1* 1Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520 2Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shannxi 710032, China 3Department of Psychology, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus.
    [Show full text]
  • Brain-Implantable Biomimetic Electronics As the Next Era in Neural Prosthetics
    Brain-Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics THEODORE W. BERGER, MICHEL BAUDRY, ROBERTA DIAZ BRINTON, JIM-SHIH LIAW, VASILIS Z. MARMARELIS, FELLOW, IEEE, ALEX YOONDONG PARK, BING J. SHEU, FELLOW, IEEE, AND ARMAND R. TANGUAY, JR. Invited Paper An interdisciplinary multilaboratory effort to develop an im- has been developed—silicon-based multielectrode arrays that are plantable neural prosthetic that can coexist and bidirectionally “neuromorphic,” i.e., designed to conform to the region-specific communicate with living brain tissue is described. Although the final cytoarchitecture of the brain. When the “neurocomputational” and achievement of such a goal is many years in the future, it is proposed “neuromorphic” components are fully integrated, our vision is that that the path to an implantable prosthetic is now definable, allowing the resulting prosthetic, after intracranial implantation, will receive the problem to be solved in a rational, incremental manner.Outlined electrical impulses from targeted subregions of the brain, process in this report is our collective progress in developing the underlying the information using the hardware model of that brain region, and science and technology that will enable the functions of specific communicate back to the functioning brain. The proposed prosthetic brain damaged regions to be replaced by multichip modules con- microchips also have been designed with parameters that can be sisting of novel hybrid analog/digital microchips. The component optimized after implantation, allowing each prosthetic to adapt to a microchips are “neurocomputational” incorporating experimen- particular user/patient. tally based mathematical models of the nonlinear dynamic and adaptive properties of biological neurons and neural networks.
    [Show full text]
  • Central and Peripheral Peptides Regulating Eating
    REVIEW Central and Peripheral Peptides Regulating Eating Behaviour and Energy Homeostasis in Anorexia Nervosa and Bulimia Nervosa: A Literature Review Alfonso Tortorella1, Francesca Brambilla2, Michele Fabrazzo1, Umberto Volpe1, Alessio Maria Monteleone1, Daniele Mastromo1 & Palmiero Monteleone1,3* 1Department of Psychiatry, University of Naples SUN, Napoli, Italy 2Department of Psychiatry, San Paolo Hospital, Milan, Italy 3Department of Medicine and Surgery, University of Salerno, Salerno, Italy Abstract A large body of literature suggests the occurrence of a dysregulation in both central and peripheral modulators of appetite in patients with anorexia nervosa (AN) and bulimia nervosa (BN), but at the moment, the state or trait-dependent nature of those changes is far from being clear. It has been proposed, although not definitively proved, that peptide alterations, even when secondary to malnutrition and/or to aberrant eating behaviours, might contribute to the genesis and the maintenance of some symptomatic aspects of AN and BN, thus affecting the course and the prognosis of these disorders. This review focuses on the most significant literature studies that explored the physiology of those central and peripheral peptides, which have prominent effects on eating behaviour, body weight and energy homeostasis in patients with AN and BN. The relevance of peptide dysfunctions for the pathophysiology of eating disorders is critically discussed. Copyright © 2014 John Wiley & Sons, Ltd and Eating Disorders Association. Received 2 April 2014; Revised 14 May 2014; Accepted 15 May 2014 Keywords anorexia nervosa; bulimia nervosa; eating disorders; neuroendocrinology; feeding regulators; central peptides; peripheral peptides *Correspondence Palmiero Monteleone, MD, Department of Medicine and Surgery, University of Salerno, Via S.
    [Show full text]
  • Understanding Eating Disorders
    Hormones and Behavior 50 (2006) 572–578 www.elsevier.com/locate/yhbeh Understanding eating disorders Per Södersten ⁎, Cecilia Bergh, Michel Zandian Karolinska Institutet, Section of Applied Neuroendocrinology, Center for Eating Disorders, AB Mando, Novum, S-141 57 Huddinge, Sweden Received 16 May 2006; revised 20 June 2006; accepted 21 June 2006 Available online 4 August 2006 Abstract The outcome in eating disorders remains poor and commonly used methods of treatment have little, if any effect. It is suggested that this situation has emerged because of the failure to realize that the symptoms of eating disorder patients are epiphenomena to starvation and the associated disordered eating. Humans have evolved to cope with the challenge of starvation and the neuroendocrine mechanisms that have been under this evolutionary pressure are anatomically versatile and show synaptic plasticity to allow for flexibility. Many of the neuroendocrine changes in starvation are responses to the externally imposed shortage of food and the associated neuroendocrine secretions facilitate behavioral adaptation as needed rather than make an individual merely eat more or less food. A parsimonious, neurobiologically realistic explanation why eating disorders develop and why they are maintained is offered. It is suggested that the brain mechanisms of reward are activated when food intake is reduced and that disordered eating behavior is subsequently maintained by conditioning to the situations in which the disordered eating behavior developed via the neural system for attention. In a method based on this framework, patients are taught how to eat normally, their physical activity is controlled and they are provided with external heat. The method has been proven effective in a randomized controlled trial.
    [Show full text]
  • Neuroscience-Inspired Dynamic Architectures
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Neuroscience-Inspired Dynamic Architectures Catherine Dorothy Schuman University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons Recommended Citation Schuman, Catherine Dorothy, "Neuroscience-Inspired Dynamic Architectures. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Catherine Dorothy Schuman entitled "Neuroscience-Inspired Dynamic Architectures." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer Science. J. Douglas Birdwell, Major Professor We have read this dissertation and recommend its acceptance: Mark E. Dean, Tsewei Wang, Itamar Arel, Bruce MacLennan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Neuroscience-Inspired Dynamic Architectures Catherine Dorothy Schuman University of Tennessee - Knoxville, [email protected] This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange.
    [Show full text]
  • Kyle Lynn Gobrogge, Ph.D. (P): (617) 485-6861 | (E): [email protected]
    2 Cummington Mall, Boston, MA 02215 Kyle Lynn Gobrogge, Ph.D. (P): (617) 485-6861 | (E): [email protected] Academic Appointments Research Recognition Lecturer, Undergraduate Program in Neuroscience Trainee Development Research Award 2016 Boston University | 2019 – Present Society for Neuroscience • Instructor, Principles of Neuroscience Lab | Undergraduate • Instructor , Molecular and Cell Biology Lab | Undergraduate Postdoctoral Research Award | 2016 Tufts University School of Medicine Part Time Lecturer, Psychology Department Northeastern University | 2017 – Present Graduate Student Research Award | 2016 • Instructor, Abnormal Psychology | Undergraduate Office of Research, Florida State University • Instructor, Drugs and Behavior | Undergraduate • Instructor, Personality Psychology | Undergraduate • Instructor, Developmental Psychology | Undergraduate New Investigator Award | 2009 Society for Behavioral Neuroendocrinology Adjunct Assistant Professor, Human Development Program European Science Foundation Emerging Hellenic College Holy Cross | 2017 – Present • Instructor, Research Methods | Undergraduate Investigator Award | 2009 • Instructor, Neuroscience | Undergraduate • Instructor, Lifespan | Undergraduate Postdoctoral Research Poster Award | 2008 • Instructor, Statistics | Undergraduate International Society for Research on Aggression Instructor, Behavioral Neuroscience Yale University | Summer 2017 Travel Award | 2008 Society for Behavioral Neuroendocrinology Postdoctoral Research Fellow, Behavioral Neuroscience Boston College | 2016
    [Show full text]
  • The Neuromodulatory Basis of Emotion
    1 The Neuromodulatory Basis of Emotion Jean-Marc Fellous Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California The Neuroscientist 5(5):283-294,1999. The neural basis of emotion can be found in both the neural computation and the neuromodulation of the neural substrate mediating behavior. I review the experimental evidence showing the involvement of the hypothalamus, the amygdala and the prefrontal cortex in emotion. For each of these structures, I show the important role of various neuromodulatory systems in mediating emotional behavior. Generalizing, I suggest that behavioral complexity is partly due to the diversity and intensity of neuromodulation and hence depends on emotional contexts. Rooting the emotional state in neuromodulatory phenomena allows for its quantitative and scientific study and possibly its characterization. Key Words: Neuromodulation, Emotion, Affect, Hypothalamus, Amygdala, Prefrontal the behavior1 that this substrate mediates. The Introduction neuromodulation of 'cognitive centers' results in phenomena pertaining to emotional influences of The scientific study of the neural basis of cognitive processing. Neuromodulations of memory emotion is an active field of experimental and structures explain the influence of emotion on theoretical research (See (1,2) for reviews). Partly learning and recall; the neuromodulation of specific because of a lack of a clear definition (should it reflex pathways explains the influence of the exists) of what emotion is, and probably because of emotional state on elementary motor behaviors, and its complexity, it has been difficult to offer a so forth... neuroscience framework in which the influence of The instantaneous pattern of such modulations emotion on behavior can be studied in a (i.e.
    [Show full text]
  • The Neuroendocrinology of Reproduction: an Overview1
    BIOLOGY OF REPRODUCTION 20, 111-127 (1979) The Neuroendocrinology of Reproduction: An Overview1 ROGER A. GORSKI Department of Anatomy and Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90024 Downloaded from https://academic.oup.com/biolreprod/article/20/1/111/4559056 by guest on 27 September 2021 INTRODUCTION isms, it may be useful to divide the reproductive Each of the preceding speakers in this process into several distinct phases (Table symposium has already reviewed one important 1). A very early step in the reproductive process facet of the neuroendocrinology of reproduc­ is the differentiation of the two individuals tion. Therefore, it is clearly unnecessary to which will eventually be capable of reproducing present a thorough review of this entire field when mature. Although the concept of the and my approach will be to attempt to present sexual differentiation of the reproductive one overall perspective of the role of the brain system is well-known for the internal reproduc­ in the reproductive process while attempting to tive organs and the external genitalia (Wilson, emphasize that which has not already been dis­ 1978), this same concept applies to brain cussed. At best, this discussion will complement function as well. With respect to the peripheral the other presentations, which together do reproductive system, remember that for a form a rather complete overview of the neuro­ period during development, the male and endocrinology of reproduction. To begin with, female are morphologically indistinguishable. it will be helpful to consider the role of the After subsequent differntiation of the gonadal brain in the reproductive process in very anlage into testis or ovary, the secretory activity general terms.
    [Show full text]
  • Cerebellar Control of Defense Reactions Under Orexin-Mediated Neuromodulation As a Model of Cerebellohypothalamic Interaction
    Manuscript submitted to: Volume 1, Issue 1, 89-95. AIMS Neuroscience DOI: 10.3934/Neuroscience.2014.1.89 Received date 1 April 2014, Accepted date 4 June 2014, Published date 10 June 2014 Review article Cerebellar Control of Defense Reactions under Orexin-mediated Neuromodulation as a Model of Cerebellohypothalamic Interaction Masao Ito 1,* and Naoko Nisimaru 1,2 1 RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 315-0198, Japan 2 Department of Physiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama,Yufu, Oita 879-5593, Japan * Correspondence: Email: [email protected]; Tel: +81-48467-6984: Fax: +81-48467-6975. Abstract: Recent evidence has indicated that, when an animal is exposed to harmful stimuli, hypothalamic orexinergic neurons are activated via the amygdala and in turn tune the neuronal circuits in the spinal cord, brainstem, and an area of the cerebellum (folium-p of the flocculus) by neuromodulation. The animal would then initiate “defense reactions” composed of complex movements and associated cardiovascular responses. To investigate neuronal mechanisms of the defense reactions, Nisimaru et al. (2013) analyzed cardiovascular responses induced by an electric foot shock stimulus to a rabbit and found two major effects. One is redistribution of arterial blood flow from visceral organs to active muscles, and the other is a modest increase in blood pressure. Kainate-induced lesions of folium-p impaired these two effects. Moreover, folium-p Purkinje cells were shown to project to the parabrachial nucleus, one of the major cardiovascular centers in the brainstem. These data indicate that folium-p Purkinje cells regulate cardiovascular defense reactions via parabrachial nucleus under orexin-mediated neuromodulation.
    [Show full text]
  • The Role of the Gut Microbiome, Immunity, and Neuroinflammation
    nutrients Review The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders Michael J. Butler 1,† , Alexis A. Perrini 2,† and Lisa A. Eckel 2,* 1 Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; [email protected] 2 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-850-644-3480 † Co-first authors. Abstract: There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroin- flammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing Citation: Butler, M.J.; Perrini, A.A.; novel, highly effective treatments for these often intractable and unremitting eating disorders.
    [Show full text]
  • Expression of VGF Mrna in Developing Neuroendocrine and Endocrine Tissues
    227 Expression of VGF mRNA in developing neuroendocrine and endocrine tissues S E Snyder1, B Peng3, J E Pintar3 and S R J Salton1,2 1Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA 2Department of Geriatrics, Mount Sinai School of Medicine, New York, New York 10029, USA 3Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA (Requests for offprints should be addressed toSRJSalton,Fishberg Research Center for Neurobiology, Box 1065, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029-6945, USA; Email: [email protected]) (S E Snyder is currently at Department of Pediatrics, Division of Child Neurology, New York Presbyterian Hospital, Weill Cornell Medical Center, 525E. 68th St., New York, New York 10021, USA) Abstract Analysis of knockout mice suggests that the neurotropin- CNS and PNS have been completed, little is known about inducible secreted polypeptide VGF (non-acronymic) the ontogeny of VGF expression in endocrine and neuro- plays an important role in the regulation of energy balance. endocrine tissues. Here, we report that VGF mRNA is VGF is synthesized by neurons in the central and periph- detectable as early as embryonic day 15·5 in the develop- eral nervous systems (CNS, PNS), as well as in the adult ing rat gastrointestinal and esophageal lumen, pancreas, pituitary, adrenal medulla, endocrine cells of the stomach adrenal, and pituitary, and we further demonstrate that and pancreatic beta cells. Thus VGF, like cholecystokinin, VGF mRNA is synthesized in the gravid rat uterus, leptin, ghrelin and other peptide hormones that have been together supporting possible functional roles for this shown to regulate feeding and energy expenditure, is polypeptide outside the nervous system and in the enteric synthesized in both the gut and the brain.
    [Show full text]