Black Portuguese Millipedes & Slaters Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Black Portuguese Millipedes & Slaters Fact Sheet OCTOBER 2013 BLACK PORTUGUESE MILLIPEDES & SLATERS FACT SHEET SOUTHERN REGION MILLIPEDES AND SLATERS IN NO-TILL SYSTEMS The black Portuguese millipede is emerging as a sporadic but damaging pest of broadacre agriculture, particularly canola, while high populations of slaters have damaged some crops in recent years. PHOTOS: © NICK MONAGHAN, LIFEUNSEEN.COM Black Portuguese millipedes (left) and slaters (right) generally feed on organic matter, however their populations and the incidence of crop attack has increased in recent years. BLACK PORTUGUESE MILLIPEDES KEY POINTS In the past five to 10 years, damage caused to some broadacre crops by black Portuguese millipedes (Ommatoiulus moreleti) has Black Portuguese millipede damage to emerging canola been increasing. plants has increased in recent seasons. The increase has been linked to stubble retention, no-till farming Rises in populations have been linked to increased uptake practices and improvements in soil organic matter, which have of no-till and stubble retention. provided a more favourable habitat for millipedes to survive and Reducing paddock stubble loads over summer will generally reproduce. Recent wet summers have contributed to a population reduce millipede numbers. build-up in some parts of southern Australia while planting of more vulnerable crops has led to increased damage. Slaters can cause extensive crop damage to emerging seedlings. The species The Australiodillo bifrons slater species has the ability to The black Portuguese millipede is native to Europe and has been swarm over a soil surface. accidentally introduced to other countries, including Australia, where Finding black Portuguese millipedes and slaters in a crop it is now common in South Australia, New South Wales, Victoria, does not necessarily mean damage will occur. Tasmania and Western Australia. Management options are limited after crop emergence so The smooth, cylindrical body of the black Portuguese millipede prevention is a key part of control. distinguishes it from other native species, which often have rougher and more uneven bodies. They are part of the same family as Level 1, Tourism House | 40 Blackall Street, Barton ACT 2600 | PO Box 5367, Kingston ACT 2604 | T +61 2 6166 4500 | F +61 2 6166 4599 | E [email protected] | W www.grdc.com.au several native Australian millipedes and layer) is soft and easily damaged when AUTHORITY 2003 AGRICULTURE PHOTO: © WA centipedes called myriapods, meaning first formed. Black Portuguese millipedes ‘many-legged’. Measuring 30 to 45 usually mature after two years when they millimetres, adult millipede bodies consist are in the tenth or eleventh stage of growth. of up to 50 segments with each segment having two pairs of legs. When disturbed, Habitat The smooth, cylindrical body of the they either curl up in a tight spiral or thrash black Portuguese millipede distinguishes to escape. Millipedes feed on leaf litter, damp and decaying wood, fungus and vegetable it from other native species, which often have rougher and more uneven bodies. Native millipedes are widespread in low matter like tender roots, mosses, pollen or numbers but black Portuguese millipedes green leaves on the ground. They can play a are found in large numbers and are quite role breaking down organic matter in the soil. mobile for their size, especially after In the southern region, damage has been opening autumn rains. They can move As a result, they occur in greater numbers reported in the medium and high rainfall several hundred metres in a year. in undisturbed leaf litter and organic mulch zones including near Wagga Wagga and and in areas where winter weeds, such They are transported between properties Henty in New South Wales; the Mid North, as sour sobs and salvation jane, form a and to new regions in plant material, Yorke Peninsula and Kangaroo Island in mostly continuous ground cover. Millipedes infested soil and farm machinery. South Australia; and the Western Districts are not numerous in cultivated areas or and Wimmera areas of Victoria. In many bare ground. Life cycle cases, damage has been worst in areas Black Portuguese millipedes start mating in Crop damage with high volumes of retained stubble or March and April and lay most of their eggs in where plant matter from the previous year April and May. Mature females lay about 200 Since black Portuguese millipedes generally was present. yellowish-white eggs the size of a pinhead in feed on organic matter, crop feeding a small hole they make in the soil. damage is relatively rare and unusual. The presence of black Portuguese millipedes does not always result in Black Portuguese millipedes occasionally An immobile, legless stage hatches from damage. There have been many instances each egg and develops into the first active attack living plants by chewing the leaves where no damage has occurred despite stage of the life cycle after about one week. and stems. It has been suggested that large millipede populations. Millipedes are This first stage has only three pairs of legs. millipedes feed on crop plants when they mostly active and feed at night, which is are seeking moisture but this has not been Millipedes grow through a series of moults. confirmed. the best time to check if they are causing At each moult, the millipede adds more damage to canola plants. legs and body segments until it is mature. Most reported millipede damage has During the first year of life, millipedes are occurred in emerging canola crops on Management quite small and easily overlooked. After black organic soils with heavy stubble Control options for millipedes are limited the first year, juveniles have reached loads, although damage has also been the seventh, eighth or ninth stage of observed on lighter soils. but there are some measures that will curb populations. development and will be about 1.5 In canola, millipedes remove irregular centimetres long. After this, they only moult sections from the leaves and can kill whole in spring and summer. Chemical plants if damage is severe. Damage to During moulting, millipedes are vulnerable cereals can also occur where the stems of There are no insecticides registered to because the new cuticle (outside skin young plants are chewed. control millipedes in broadacre agriculture. PHOTO: KYM PERRY, SARDI PHOTO: KYM PERRY, IMAGE: © WA AGRICULTURE AUTHORITY 2003 & PIRSA AGRICULTURE IMAGE: © WA 200-300 eggs are laid in a chamber in the soil After two years, An immobile, legless stage millipedes are at the hatches from each egg tenth and eleventh stage of growth and are ready to reproduce Eggs are laid in autumn The first active 1.5 life size stage has only three pairs of legs. It can be found about a month after the eggs were laid The light brown juveniles moult from six to eight times during the first year All meaurements shown in millimetres The life cycle of the black Portuguese millipede. Seedling damage from millipedes. page 2 Cultural PHOTO: A WEEKS, PHOTO: A WEEKS, Reducing the amount of trash and stubble over summer and early autumn is likely to be the most effective way to reduce cesar cesar millipede numbers. Other factors to consider in management of crops and rotations include: 3 PHOTOS: ©NICK MONAGHAN, LIFEUNSEEN.COM Canola sown into paddocks with high organic matter have a greater risk of Typical swarming behaviour of pest millipede damage. slater species Australiodillo bifrons moving across a wheat paddock. Burning stubbles may reduce millipede populations. Early sowing of high-vigour varieties at a higher seeding rate will help Most slaters are detritivores, meaning compensate for seedling losses from they feed on decaying vegetation and pest damage. associated fungi, as well as on dead animal matter such as insects. They can eat Biological living plants, such as seedlings and root vegetables, but only rarely. There are very few natural predators of millipedes because their bodies contain Slaters need damp conditions and will die rows of glands that secrete a pungent if exposed to open and dry situations. They yellowish fluid when they are agitated. tend to be active at night when the risk of This fluid makes millipedes distasteful to dehydration is low. predators, such as birds. Female slaters keep their eggs in a pouch until the young hatch. Hatchlings then leave A parasitic native nematode, Rhabditis the parent and are completely independent. necromena, attacks and kills millipedes Slaters grow through a series of moults by reproducing in the millipede’s gut. in which the outer rigid skeleton is shed, However the use of nematodes is unlikely allowing growth to the next larger stage and to be economically viable for broadacre finally to adult stage. When moulting, slaters crop release. shed in two stages – the top half of their Some spiders and beetles will eat body first followed by the remaining half two millipedes but these predators will not days later. During moulting, the slater is very significantly reduce large populations. vulnerable and must find shelter. There are a number of slater species in Australia including (from top) Flood SLATERS Species bug slater (A. bifrons); Common slater Native and introduced slaters have There are a number of slater species in (Porcellio scaber) and the Pill bug slater become an increasing pest of broadacre Australia including: (Armadillidium vulgare). When moulting, slaters shed in two stages – the top crops and pastures but this has not always Common slater half of their body first followed by the been the case. The common slater, Porcellio scaber, remaining half two days later (above). The move to minimum or no-tillage and is widespread in Australia, originally stubble retention is likely to have created introduced from Europe. The species can a more habitable landscape in cropping grow up to 20 millimetres in length and is paddocks for slaters. usually pale grey however brown, yellow or colour with darker irregular spots and a dark orange hues have been observed.
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Draft Craigie Bushland Management Plan
    APPENDIX 5 ATTACHMENT 1 City of Joondalup Draft Craigie Bushland Management Plan 1 Contents Acknowledgements ........................................................................................................... 3 Acronyms .......................................................................................................................... 4 Executive Summary ........................................................................................................... 6 1.0 Introduction .................................................................................................................. 8 1.1 Background .............................................................................................................. 8 1.2 Natural Area Management Plans ............................................................................. 8 1.3 Study Area ............................................................................................................... 8 1.4 Aim and Objectives ................................................................................................ 13 1.5 Purpose ................................................................................................................. 13 1.6 Strategic Context ................................................................................................... 13 1.7 Stakeholder Consultation ....................................................................................... 14 2.0 Description of the Physical Environment ...................................................................
    [Show full text]
  • Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis
    Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Monica A. Farfan, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2010 Thesis Committee: Hans Klompen, Advisor John W. Wenzel Andrew Michel Copyright by Monica A. Farfan 2010 Abstract The focus of this thesis is the ecology of invasive millipedes (Diplopoda) in the family Julidae. This particular group of millipedes are thought to be introduced into North America from Europe and are now widely found in many urban, anthropogenic habitats in the U.S. Why are these animals such effective colonizers and why do they seem to be mostly present in anthropogenic habitats? In a review of the literature addressing the role of millipedes in nutrient cycling, the interactions of millipedes and communities of fungi and bacteria are discussed. The presence of millipedes stimulates fungal growth while fungal hyphae and bacteria positively effect feeding intensity and nutrient assimilation efficiency in millipedes. Millipedes may also utilize enzymes from these organisms. In a continuation of the study of the ecology of the family Julidae, a comparative study was completed on mites associated with millipedes in the family Julidae in eastern North America and the United Kingdom. The goals of this study were: 1. To establish what mites are present on these millipedes in North America 2. To see if this fauna is the same as in Europe 3. To examine host association patterns looking specifically for host or habitat specificity.
    [Show full text]
  • Ommatoiulus Moreleti (Lucas) and Cylindroiulus
    Bulletin of the British Myriapod & Isopod Group Volume 30 (2018) OMMATOIULUS MORELETI (LUCAS) AND CYLINDROIULUS PYRENAICUS (BRÖLEMANN) NEW TO THE UK (DIPLOPODA, JULIDA: JULIDAE) AND A NEW HOST FOR RICKIA LABOULBENIOIDES (LABOULBENIALES) Steve J. Gregory1, Christian Owen2, Greg Jones and Emma Williams 1 4 Mount Pleasant Cottages, Church Street, East Hendred, Oxfordshire, OX12 8LA, UK. E-mail: [email protected] 2 75 Lewis Street, Aberbargoed. CF8 19DZ, UK. E-mail: [email protected] ABSTRACT The schizophylline millipede Ommatoiulus moreleti (Lucas) and the cylindroiuline millipede Cylindroiulus pyrenaicus (Brölemann) (Julida: Julidae) are recorded new for the UK from a site near Bridgend, Glamorganshire, in April 2017. An unidentified millipede first collected in April 2004 from Kenfig Burrows, Glamorganshire, is also confirmed as being C. pyrenaicus. Both species are described and illustrated, enabling identification. C. pyrenaicus is reported as a new host for the Laboulbeniales fungus Rickia laboulbenioides. Summary information is provided on habitat preferences of both species in South Wales and on their foreign distribution and habitats. It is considered likely that both species have been unintentionally introduced into the UK as a consequence of industrial activity in the Valleys of south Wales. INTRODUCTION The genera Ommatoiulus Latzel, 1884 and Cylindroiulus Verhoeff, 1894 (Julida: Julidae) both display high species diversity (Kime & Enghoff, 2017). Of the 47 described species of Ommatoiulus the majority are found in North Africa and the Iberian Peninsula (ibid). Currently, just one species, Ommatoiulus sabulosus (Linnaeus, 1758), is known from Britain and Ireland, a species that occurs widely across northern Europe (Kime, 1999) and in Britain reaches the northern Scottish coastline (Lee, 2006).
    [Show full text]
  • Portuguese Millipedes Portuguese Millipedes (Ommatoiulus Moreleti (Diplodia, Julida: Julidae) Invade Houses in a Number of City and Country Areas in SA
    Thursday, 15 September, 2016 Author: Peter Bailey, Contact: Greg Baker Portuguese Millipedes Portuguese millipedes (Ommatoiulus moreleti (Diplodia, Julida: Julidae) invade houses in a number of city and country areas in SA. These millipedes are now part of the environment. This fact sheet describes something of their life history, how the householder can minimise the impact of invasions, and how the Department of Primary Industries and Regions SA efforts at biological control may eventually reduce numbers below nuisance level. DESCRIPTION The Portuguese millipede belongs to a group of animals which have many body segments and two pairs of legs on most body segments. Millipedes are vegetarians, eating soft vegetation such as decaying leaf litter, mosses and pollen. Many species of millipedes occur in temperate and tropical parts of the world; Australia has numerous native species, some of which occur in SA. BENEFITS Millipedes are probably important in soil formation. They break down leaf litter and enrich the soil. MILLIPEDES AS PESTS Portuguese millipedes are pests because they invade houses. They are one of the few millipede species that are attracted to lights at night, and this behaviour explains why they invade houses. Once inside a house they usually die. They do not breed inside houses. Millipede invasions vary in intensity, depending on the environment surrounding a house. Where millipedes are dense, invasions of hundreds, or even thousands, may occur during several days. MILLIPEDES AND HEALTH There is no evidence that Portuguese millipedes affect human health. Their bodies contain rows of glands that secrete a pungent yellowish secretion when the millipede is agitated.
    [Show full text]
  • The Black Portuguese Millipede, Ommatoiulus Moreleti, Is a Native of Portugal and Was Accidentally Introduced to Australia, First Appearing in South Australia in 1953
    The black Portuguese millipede, Ommatoiulus moreleti, is a native of Portugal and was accidentally introduced to Australia, first appearing in South Australia in 1953. They have since invaded all the southern mainland states. They are attracted to light and will enter buildings at night, although once inside they do not breed and will eventually die. While there is no evidence they affect human health, they can occur in plague numbers, and can contaminate food and infest carpet and bedding. Portuguese millipedes are herbivorous, which means in plague proportions they may also destroy seedlings and fruit and vegetable crops. When disturbed a millipede may release a pungent and distasteful yellowish secretion which discourages predators, such as birds. Note: the secretion may stain skin or clothes and is extremely irritating if rubbed into the eyes. However as it is composed of organic chemicals called quinones, it quickly breaks down in water. Mature black Portuguese millipedes are smooth and cylindrical, 20-45 mm long and slate- grey to black in colour. Juveniles are light brown and striped. Juveniles hatch from eggs in the soil and reach maturity in two years. During hot dry weather they will hide in the soil, however rain in spring and particularly in autumn will stimulate activity and breeding. What to do? Lighting Portuguese millipedes are attracted to light. If you are able to do so, turn off any external lights which are close to your house or other buildings and minimise any escape of light by closing curtains and blinds. Use weather-strips on doors as good door seals will also help prevent entry into the home.
    [Show full text]
  • A New Species of Tridactylogonus Jeekel, 1982 from South Australia (Diplopoda, Polydesmida, Paradoxosomatidae). Zookeys 703: 97–107
    A peer-reviewed open-access journal ZooKeys 703: 97–107A (2017) new species of Tridactylogonus Jeekel, 1982 from South Australia... 97 doi: 10.3897/zookeys.703.20986 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Tridactylogonus Jeekel, 1982 from South Australia (Diplopoda, Polydesmida, Paradoxosomatidae) Robert Mesibov1 1 West Ulverstone, Tasmania 7315, Australia Corresponding author: Robert Mesibov ([email protected]) Academic editor: S. Golovatch | Received 14 September 2017 | Accepted 16 September 2017 | Published 28 September 2017 http://zoobank.org/9520AF9A-9F9A-4892-B875-D39D4A4C5B25 Citation: Mesibov R (2017) A new species of Tridactylogonus Jeekel, 1982 from South Australia (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 703: 97–107. https://doi.org/10.3897/zookeys.703.20986 Abstract Tridactylogonus warrenbenensis sp. n. is described from Warrenben Conservation Park at the southern end of the Yorke Peninsula in South Australia. Like T. obscurus Jeekel, 1982 and T. rugosissimus Jeekel, 2002, the new species has prominent cellular sculpturing on the prozonites and granulose sculpturing on parts of the metazonites. Unlike its congeners and most species in the subfamily Australiosomatinae, the new species lacks a femoral process or tubercle on male leg 1. Keywords Diplopoda, Polydesmida, Paradoxosomatidae,South Australia, Australia Introduction I collected the new species described here during two recent visits to the lower Yorke Peninsula in South Australia (Fig. 1). It was the only native polydesmidan species I found in the area, much of which has been heavily colonised by the introduced Portug- ese millipede Ommatoiulus moreleti (Lucas, 1860). It is a remarkably atypical species within the Australian Paradoxosomatidae, as it lacks a femoral process on male leg 1 and has prominent cuticular sculpturing on the prozonites and metazonites.
    [Show full text]
  • The Perception of Diplopoda (Arthropoda, Myriapoda) by the Inhabitants of the County of Pedra Branca, Santa Teresinha, Bahia, Brazil
    Acta biol. Colomb., Vol. 12 No. 2, 2007 123 - 134 THE PERCEPTION OF DIPLOPODA (ARTHROPODA, MYRIAPODA) BY THE INHABITANTS OF THE COUNTY OF PEDRA BRANCA, SANTA TERESINHA, BAHIA, BRAZIL La percepción de diplopoda (Arthropoda, Myriapoda) por los habitantes del poblado de Pedra Branca, Santa Teresinha, Bahía, Brasil ERALDO M. COSTA NETO1, Ph. D. 1Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Laboratório de Etnobiologia, Km 03, BR 116, Campus Universitário, CEP 44031-460, Feira de Santana, Bahia, Brasil Fone/Fax: 75 32248019. [email protected] Presentado 30 de junio de 2006, aceptado 5 de diciembre 2006, correcciones 22 de mayo de 2007. ABSTRACT This paper deals with the conceptions, knowledge and attitudes of the inhabitants of the county of Pedra Branca, Bahia State, on the arthropods of the class Diplopoda. Data were collected from February to June 2005 by means of open-ended interviews carried out with 28 individuals, which ages ranged from 13 to 86 years old. It was recorded some traditional knowledge regarding the following items: taxonomy, biology, habitat, ecology, seasonality, and behavior. Results show that the diplopods are classified as “insects”. The characteristic of coiling the body was the most com- mented, as well as the fact that these animals are considered as “poisonous”. In gen- eral, the traditional zoological knowledge of Pedra Branca’s inhabitants concerning the diplopods is coherent with the academic knowledge. Key words: Ethnozoology, ethnomyriapodology, perception, millipede. RESUMEN Este artículo registra las concepciones, los conocimientos y los comportamientos que los habitantes del poblado de Pedra Branca, en el estado de Bahía, poseen sobre los artrópodos de la clase Diplopoda.
    [Show full text]
  • On Mass Migrations in Millipedes Based on A
    ZOOLOGICAL RESEARCH New observations - with older ones reviewed - on mass migrations in millipedes based on a recent outbreak on Hachijojima (Izu Islands) of the polydesmid diplopod (Chamberlinius hualienensis, Wang 1956): Nothing appears to make much sense Victor Benno MEYER-ROCHOW1,2,* 1 Research Institute of Luminous Organisms, Hachijo, 2749 Nakanogo (Hachijojima), Tokyo, 100-1623, Japan 2 Department of Biology (Eläinmuseo), University of Oulu, SF-90014 Oulu, P.O. Box 3000, Finland ABSTRACT individuals occurring together at close proximity. It is concluded that mass migrations and aggregations in Mass aggregations and migrations of millipedes millipedes do not have one common cause, but despite numerous attempts to find causes for their represent phenomena that often are seasonally occurrences are still an enigma. They have been recurring events and appear identical in their reported from both southern and northern outcome, but which have evolved as responses to hemisphere countries, from highlands and lowlands different causes in different millipede taxa and of both tropical and temperate regions and they can therefore need to be examined on a case-to-case involve species belonging to the orders Julida and basis. Spirobolida, Polydesmida and Glomerida. According Keywords: Myriapoda; Spawning migration; Aggregation to the main suggestions put forward in the past, 1 mass occurrences in Diplopoda occur: (1) because behaviour; Diplopod commensals and parasites of a lack of food and a population increase beyond sustainable levels; (2) for the purpose of INTRODUCTION reproduction and in order to locate suitable oviposition sites; (3) to find overwintering or Mass aggregations of millipedes are not a recent phenomenon aestivation sites; (4) because of habitat disruption (Hopkin & Read, 1992).
    [Show full text]
  • GRDC Grownotes Canola Southern Region
    Canola Southern Region December 2015 planning/paddock preparation • pre-planting • planting • plant growth and physiology • nutrition and fertiliser • weed control • insect control • nematode control • diseases • crop desiccation and spray out • harvest • storage • environmental issues • marketing • current research Start here for answers to your immediate canola crop management issues What variety should I grow? What’s the latest thinking on optimum sowing rate? How do I approach canola nutrition? What approach should I take to weed control in my canola crop? What pre-emergent herbicide control options do I have? How do I control aphids in canola? Should I choose windrowing or direct heading? Know more. Grow more. Key Management Issues for Canola in the Southern Region S Sulfur nutrition for canola is very important. Canola has a higher S requirement than Use N other crops. similar rates NO TILL Ensure heavy stubble of nitrogen Use no-tillage as it does not on canola as stores more cover the you would for soil moisture plant line as it high protein than conventional will impede canola wheat in the fallows establishment same soil 10 Where conditions allow, aim to drill seed through 20 the main seed box to 30 1.5–3 CM deep and Grow several varieties to spread harvest timing and the 40 UP TO 5 CM in self-mulching clays risk of unfavourable events e.g. moisture stress and frost 50 Consider HERBICIDE e.g. triazine tolerant TOLERANT (TT) RoundupReady® or Clearfield® where Canola is best VARIETIES weeds are a problem followed with a WINTER CEREAL, as disease levels (e.g.
    [Show full text]
  • Biodiversity, Abundance and Prevalence of Kleptoparasitic Nematodes Living Inside the Gastrointestinal Tract of North American Diplopods
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods Gary Phillips University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Phillips, Gary, "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4837 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Gary Phillips entitled "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Entomology,
    [Show full text]
  • Under Cont R O L Pest Plant and Animal Management News
    Under Cont r o l Pest Plant and Animal Management News Number 20 NRE Frankston, Keith Turnbull Research Institute June 2002 ISSN 1328-2425 Rapid response plan for potential, new and emerging weeds INSIDE THIS ISSUE Weed prosecutions - guilty 2 Victorian Weed Alert on gorse Wanted: weed spotters! 2 Branched broomrape - 3 Victoria still clean Commonwealth funds for 4 A new Department of Natural Resources and Weeds of National Environment project is focussing on potential, new Significance in Victoria and emerging weeds. The aim is to, where possible, WoNS funding 4 eradicate serious new weeds before they become Friends of Plenty River - 6 Victorian Weedbuster established. A five-point rapid response plan, cur- Public Land Award 2001 rently in draft form, will ensure that new weeds are b NRE Invasive Species/ 7 quickly identified, assessed for their potential risk c Biosecurity Symposium a and then dealt with according to the risks they pose Victorian Pest Management 8 - Framework for Action and the likelihood of success of intervention. Ragwort plume moth 9 Weed Watch Warning - 10 There are a number of positions and committees Madiera vine, Anredera which will have new responsibilities as part of this h cordifolia plan. The Victorian Weed Alert Executive will su- Pest Plant Distribution 12 pervise the Department’s response to new weeds. Prevention Strategy Victoria’s pest and disease 14 The plan’s rapid response framework defines the reference collections reporting relationships and responsibilities of those Fire ant specimen collec- 15 involved. tion d Bumblebees - potential 16 To ensure sufficient preparedness for future weed threat to flora & fauna incursions, various networks and documents will Portuguese millipedes 17 be prepared to supplement the plan.
    [Show full text]