16. Salt Tectonics Copy.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

16. Salt Tectonics Copy.Pdf Salt Tectonics © Cambridge University Press 2011 Where and why do salt deposits occur? Primarily in rift basins and along passive margins Shallow marine settings in enclosed basins usually in areas undergoing active extension Within rift basins typified by half grabens and rotated blocks. Can be related to changes in sea level when spill points emerge such at the Mediterranean (the Messinian salinity crisis) when the entire Med dried up. Locations of salt basins around the world (Jackson and Talbot, 1991). 3 Internally drained extensional basins Rheology of Salt A weak rock, with about the strength of concrete at the surface. Salt is much weaker than any other sedimentary rock. Salt deforms as a viscous material that flows plastically at short timescales, even on the scale of months. Salt basically behaves like a pressurized fluid. Deformation is not driven by the salt itself. Salt responds (usually passively) to outside forces such as gravity, loads due to sedimentation and in some cases, erosion. The density of salt relative to other sediments changes with depth. Salt is nearly incompressible, thus as other sediments become more dense by compaction, a density inversion occurs, usually at around 1.0 – 1.5 km © Cambridge University Press 2011 Loading of salt by deposition of sediments creates an increased “fluid” pressure that causes salt to move into areas of lower pressure. Salt structures include dome or bullet- shaped features called diapirs and many other types of features (walls, sheets/nappes, etc). Areas where salt is withdrawn creates basins that then become filled with additional sediment (called mini basins) Once the floor of a minibasin sinks through the entire salt section, it stops moving and forms a feature called a salt weld (denoted by pairs of dots across the contact). Cross section of entire Gulf of Mexico (GoM) How large is this salt province? Minibasins Localized depocenters formed above areas where salt is withdrawn. These record salt removal by the growth strata preserved in them. They typically stop growing when the floor of the minibasin touches down on subsalt strata. This contact is termed a weld and denoted by two dots across it. Animation of minibasin and weld Mini Basin animation In the first part of animation, the structure behaves like a simple mini basin. This get more complicated after that and We will discuss this later in the section under turtles. Seismic reflection profile of a minibasin, GoM How and where does subsidence change? Seismic reflection profile of a minibasin, GoM How and where does subsidence change? Expulsion rollovers Expulsion rollovers – giant squeegees Expulsion Rollovers Structures that form where a thick deposit of sediment pushes salt forward, sort of like a gigantic squeegee. They are recognized by the offlapping nature of the growth strata that prograde from the landward side of the overall basin. Small salt pillows are sometimes formed where sedimentation moves basinward at rates faster than the salt flows. These pillows are not allochthonous per se. The floor of an expulsion rollover is a weld. Expulsion rollovers – giant squeegees Turtles Turtle structures, minibasins that growth outward with increasing salt withdrawal. Note weld at base. Basically the top of the wedge-shaped layer of salt starts to be removed more rapidly towards its thicker section, causing collapse of the flank of the basin. Crestal faulting Flank collapse Flank collapse Salt Salt Initial depocenter Weld Example of a turtle structure from the Precaspian Basin, with an inverted central depocenter above a salt weld and flanked by younger depocenters and adjacent diapirs. Note the crestal faulting and erosion. (a) (b) Model results of minibasin subsidence showing no turtle formation 26 in the absence of extension (a) and turtle formation triggeredcourtesy by of B. Vendeville extension (b) (courtesy of B. Vendeville). Mini Basin animation Diapirs Salt Diapirs Cylindrical columns that form by upward movement of salt Come in a variety of shapes depending on how they develop. Bullets, mushrooms, columns, etc. They can either be “passive” and formed between minibasins or “active” where they actively move upward, deforming the strata above them. A number of cases in the Middle East are Basically large, nearly circular mountains of nearly purre halite. © Cambridge University Press 2011 Diapirs An example of a diapir in the process of having its stem pinched off. Diapirs in the East Texas basin. Note the variety of shapes related to the stage to which they have evolved © Cambridge University Press 2011 An isolated diapir in the North Sea Diapirs that have reached the surface of the Earth in the Zagros of Iran Strain in the center of diapirs is very complex, owing to the very high shear strains the salt has undergone. Features in the center of diapirs Are often termed “curtain” folds; these are equivalent to sheath folds Formed in large shear zones in contractile (thrust) settings. Strain in the center of diapirs is very complex, owing to the very high shear strains the salt has undergone. Features in the center of diapirs Are often termed “curtain” folds; these are equivalent to sheath folds Formed in large shear zones in contractile (thrust) settings. Top of a salt diapir, note the dome-like nature of the rocks surrounding it Salt Glaciers © Cambridge University Press 2011 Paradox Analogs: Active Salt Diapirs and Glaciers in the Zagros Mtns of Iran Buckle Fold Salt in Thrust Belts Diapir & Glacier Buckle Fold Salt in Thrust Belts When thrust belts form in salt provinces, the structures that form are distinctly different than in typical thin- skinned settings. The primary different is the geometry of the entire thrust belt itself. Critical wedges are usually tapered much more thinly (less material is built up relative to a given width of a particular belt). The structures in these belts often display opposite vergent (i.e. box folds versus fault-related folds. Critical wedge taper theory, in which a weak detachment (e.g., salt) results in a narrower taper angle, a wider zone of deformation, and no preferred vergence of faults (Jaumé and Lillie, 1988). 50 Cartoons showing difference in structural style between foldbelts with (a) and without (b) salt (Jackson and Talbot, 1991). Those with salt have folding dominating over faulting, symmetrical structures with a regular wavelength and no preferred vergence, and high-angle reverse faults instead of low-angle thrusts. Map of northeastern Mexico showing the width of the Sierra Madre foldbelt increasing and the taper angle decreasing in the Monterrey salient due to the presence of salt (Marrett and Aranda-García, 2001). Cross sections through the Sierra Madre foldbelt in (a) the Monterrey salient, where there is a salt detachment; and (b) to the south, where salt is absent (Marrett and Aranda-García, 2001). Future material on Rafts, Rojos Allochthonous Salt sheets .
Recommended publications
  • Deformation of Intrasalt Competent Layers in Different Modes of Salt Tectonics Mark G
    Solid Earth Discuss., https://doi.org/10.5194/se-2019-49 Manuscript under review for journal Solid Earth Discussion started: 25 March 2019 c Author(s) 2019. CC BY 4.0 License. Deformation of intrasalt competent layers in different modes of salt tectonics Mark G. Rowan1, Janos L. Urai2, J. Carl Fiduk3, Peter A. Kukla4 1Rowan Consulting, Inc., Boulder, CO 80302, USA 5 2Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, 52056 Aachen, Germany 3Fiduk Consulting LLC, Houston, TX 77063, USA 4Geological Institute, Energy and Mineral Resources, RWTH Aachen University, 52056 Aachen, Germany Correspondence to: Mark G. Rowan ([email protected]) 10 Abstract. Layered evaporite sequences (LES) comprise interbedded weak layers (halite and, commonly, bittern salts) and strong layers (anhydrite and usually non-evaporite rocks such as carbonates and siliciclastics). This results in a strong rheological stratification, with a range of effective viscosity up to a factor of 105. We focus here on the deformation of competent intrasalt beds in different modes of salt tectonics using a combination of conceptual, numerical and analog models, and seismic data. In bedding-paralell extension, boudinage of the strong layers forms ruptured stringers, within a 15 halite matrix, that become increasingly isolated with increasing strain. In bedding-parallel shortening, competent layers tend to maintain coherency while forming harmonic, disharmonic, and polyharmonic folds, with the rheological stratification leading to buckling and fold growth by bedding-parallel shear. In differential loading, extension and the resultant stringers dominate beneath suprasalt depocenters while folded competent beds characterize salt pillows. Finally, in tall passive diapirs, stringers generated by intrasalt extension are rotated to near vertical in tectonic melanges during upward flow of salt.
    [Show full text]
  • Salt Tectonics and Its Effect on Sediment Structure and Gas Hydrate Occurrence in the Northwestern Gulf of Mexico from 2D Multichannel Seismic Data
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org SALT TECTONICS AND ITS EFFECT ON SEDIMENT STRUCTURE AND GAS HYDRATE OCCURRENCE IN THE NORTHWESTERN GULF OF MEXICO FROM 2D MULTICHANNEL SEISMIC DATA Dan’l Lewis and William Sager Department of Oceanography, Texas A&M University, MS 3146, College Station, Texas 77843–3146, U.S.A. ABSTRACT This study was undertaken to investigate mobile salt and its effect on fault structures and gas hydrate occurrence in the northwestern Gulf of Mexico. Industry 2D multichannel seismic data were used to investigate the effects of salt within an area of 7577 mi2 (19,825 km2) on the Texas continental slope in the northwestern Gulf of Mexico. The western half of the study area is characterized by a thick sedimentary wedge and isolated salt diapirs whereas the eastern half is characterized by a massive and nearly continuous salt sheet topped by a thin sedimentary section. This difference in salt characteristics marks the edge of the continuous salt sheets of the central Gulf of Mexico and is likely a result of westward decline of original salt volume. Be- neath the sedimentary wedge in the western part of the survey, an anomalous sedimentary package was found, that is described here as the diapiric, gassy sediment package (DGSP). The DGSP is highly folded at the top and is marked by tall, diapiric fea- tures. It may be either deformed shale or the toe of a complex thrust zone detaching the sedimentary wedge from deeper layers. The dataset was searched for the occurrence of bottom simulating reflectors (BSRs) because they are widely accepted as a geo- physical indicator of gas trapped beneath gas hydrate deposits that are known to occur farther east in the Gulf.
    [Show full text]
  • Three-Dimensional Evolution of Salt-Controlled Minibasins: Interactions, Folding, and Megaflap Development
    1 Aapg Bulletin Achimer September 2016, Volume 100 Issue 9 Pages 1419-1442 http://dx.doi.org/10.1306/03101614087 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00352/46328/ © 2016. The American Association of Petroleum Geologists. All rights reserved. Three-dimensional evolution of salt-controlled minibasins: Interactions, folding, and megaflap development Callot Jean-Paul 1, *, Salel Jean-Francois 2, *, Letouzey Jean 3, *, Daniel Jean-Marc 4, *, Ringenbach Jean-Claude 5, * 1 Univ Pau & Pays Adour, Ave Univ, F-64013 Pau, France. 2 Total E&P USA, 1201 Louisiana St,Suite 1800, Houston, TX 77002 USA. 3 Univ Paris 06, Univ Paris 04, Inst Sci Terre Paris iSTeP, 4 Pl Jussieu, F-75005 Paris, France. 4 IFREMER, F-29280 Plouzane, France. 5 Total SA, Ctr Sci & Tech Jean Feger, Ave Larribau, F-64000 Pau, France. * Corresponding authors email addresses : [email protected] ; [email protected] ; [email protected] ; [email protected] ; [email protected] ; Abstract : A megaflap, or an overturned, folded, sedimentary-basin edge, is a classic feature of salt-controlled basins, formed during the inception of salt allochthony. To illustrate the relative importance of the balance between salt and sediment inputs, basin rheology, and tectonism resulting from basin interactions in the development of megaflaps, a set of analog experiments were performed in a computed tomography scanner. Sediments are modeled using both granular material and a mix of granular and viscous material and salt as purely viscous material. Uneven sedimentary loading and associated salt flow localize primary minibasins, which then migrate and expand laterally until sufficient thickness is reached to pin the downbuilding phase.
    [Show full text]
  • Salt Tectonics: Some Aspects of Deformation Mechanics
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Salt tectonics: some aspects of deformation mechanics IAN DAVISON, IAN ALSOP & DEREK BLUNDELL Department of Geology, Royal Holloway, University of London, Egham, TW20 OEX, UK This volume is dedicated to studies of the defor- Deformation mechanisms mation of evaporite rocks in pillows and diapirs, and the surrounding sedimentary overburden rocks Burliga, Davison et al., Sans et al., Smith and and sediments. Salt diapirs have become the focus Talbot & Alavi provide new insights into the in- of attention in the last forty years, because of their ternal deformation patterns in salt from mesoscopic observations in deformed bodies. Shear zones are strategic importance in controlling hydrocarbon commonly developed parallel to bedding in potassic reserves, and their unique physical properties enable storage of hydrocarbons and toxic waste. horizons (Sans et al.), where the salt becomes Their economic importance is unique on the Earth's gneissose with X:Z axial ratios of crystals reaching commonly around 4:1 in Zechstein salt (Smith), surface, as evaporites in the Middle East are and Red Sea diapirs (Davison et al., Fig. 1). responsible for trapping up to 60% of its hydro- carbon reserves (Edgell). Relatively undeformed halite layers are carried laterally (Smith) and upwards as rafts between Salt also produces some of the most complex and beautiful deformation features on the Earth's shear zones into diapirs (Bnrliga), and undeformed surface, although few of these surface exposures halite rafts are often transported in a highly-sheared have been examined in detail. The first section of sylvinite matrix (Sans et al.).
    [Show full text]
  • Growth of Carbonate Platforms Controlled by Salt Tectonics (Northern Calcareous Alps, Austria)
    EGU2020-11176 https://doi.org/10.5194/egusphere-egu2020-11176 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria) Philipp Strauss1,2, Jonas Ruh3, Benjamin Huet4,5, Pablo Granado2, Josep Anton Muñoz2, Klaus Pelz1, Michael König1, Eduard Roca2, and Elizabeth P Wilson2 1OMV Austria Exploration and Production GmbH, Trabrennstrasse 6-8, 1020, Vienna, Austria 2Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí i Franquès s/n 08028, Barcelona, Spain 3Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5. 8092 Zürich. Switzerland. 4Department of Hard Rock Geology, Geological Survey of Austria Neulinggasse 38, 1030 Vienna, Austria 5Department of Geodynamic and Sedimentology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria. The Mid Triassic section of the Northern Calcareous Alps (NCA) is dominated by carbonate platforms, which grew diachronously on the Neo-Tethys shelf beginning in the Middle Anisian and ending in Lower Carnian times. The platforms grew isolated in previous deeper marine settings with high growth rates reaching 1.5 to 2 mm per year. The concept of self-controlled growth of carbonate systems on salt changes the understanding of Mid-Triassic NCA sedimentology. Conceptual models of the carbonate platform growth were done based on field observations, construction of cross-sections and subsidence analysis of selected carbonate mini-basins. To satisfy the observed boundary conditions of platforms growth in respect of timing, water depth and basin evolution, fast accumulation rates have to be assumed best represented by salt deflation and down-building of carbonate minibasins.
    [Show full text]
  • The Impact of Salt Tectonics on the Thermal Evolution and The
    geosciences Article The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea Andrés Cedeño *, Luis Alberto Rojo, Néstor Cardozo, Luis Centeno and Alejandro Escalona Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway * Correspondence: [email protected] Received: 27 May 2019; Accepted: 15 July 2019; Published: 17 July 2019 Abstract: Although the thermal effect of large salt tongues and allochthonous salt sheets in passive margins is described in the literature, little is known about the thermal effect of salt structures in confined rift basins where sub-vertical, closely spaced salt diapirs may affect the thermal evolution and petroleum system of the basin. In this study, we combine 2D structural restorations with thermal modeling to investigate the dynamic history of salt movement and its thermal effect in the Nordkapp Basin, a confined salt-bearing basin in the Norwegian Barents Sea. Two sections, one across the central sub-basin and another across the eastern sub-basin, are modeled. The central sub-basin shows deeply rooted, narrow and closely spaced diapirs, while the eastern sub-basin contains a shallower rooted, wide, isolated diapir. Variations through time in stratigraphy (source rocks), structures (salt diapirs and minibasins), and thermal boundary conditions (basal heat flow and sediment-water interface temperatures) are considered in the model. Present-day bottom hole temperatures and vitrinite data provide validation of the model. The modeling results in the eastern sub-basin show a strong but laterally limited thermal anomaly associated with the massive diapir, where temperatures in the diapir are 70 ◦C cooler than in the adjacent minibasins.
    [Show full text]
  • Origin of the Colorado Mineral Belt
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Origin of the Colorado Mineral Belt Charles E. Chapin New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA ABSTRACT Laramide plutons (ca. 75–43 Ma) are mainly may have aided the rise of magma bodies into alkaline monzonites and quartz monzonites in the upper crust from batholiths at depth, but had The Colorado Mineral Belt (CMB) is a the northeastern CMB, but dominantly calc- no role in the generation of those batholiths. northeast-trending, ~500-km-long, 25–50-km- alkaline granodiorites in the central CMB. There is the crux of the enigma. wide belt of plutons and mining districts (Colo- Geochemical and isotopic studies indicate From several decades of fi eld work in the rado, United States) that developed within that CMB magmas were generated mainly states of Colorado, New Mexico, and Wyoming, an ~1200-km-wide Late Cretaceous–Paleo- in metasomatized Proterozoic intermediate I became aware of signifi cant differences in geo- gene magma gap overlying subhorizontally to felsic lower crustal granulites and mafi c logic features on opposite sides of the CMB. My subducted segments of the Farallon plate. rocks (± mantle). Late Eocene–Oligo cene roll- goal in this paper is to summarize these differ- Of the known volcanic gaps overlying fl at back magmatism superimposed on the CMB ences, integrate them with the regional tectonic slabs in subduction zones around the Pacifi c during waning of Laramide compression and geochronologic framework, and thereby Basin, none contains zones of magmatism (ca.
    [Show full text]
  • Influence of Salt in the Tectonic Development of the Frontal Thrust
    t Special section: Balancing, restoration, and palinspastic reconstruction Influence of salt in the tectonic development of the frontal thrust belt of the eastern Cordillera (Guatiquía area, Colombian Andes) Vanessa Parravano1, Antonio Teixell2, and Andrés Mora3 Abstract Geologic maps, seismic lines, and data from a dry exploration well were used to develop a new structural model for a segment of the eastern foothills of the Eastern Cordillera of Colombia, emphasizing the role of salt tectonics. Milestones in the deformation history of the Guatiquía foothills were studied by sequential section restoration to selected steps. Uncommon structural geometries and sparse salt occurrences were interpreted in terms of a kinematic evolution in which Cretaceous salt migration in extension produced a diapiric salt wall, which was subsequently welded during the main episodes of the Andean compression, when the salt wall was squeezed generating a large overturned flap. Salt-weld strain hardening resulted in breakthrough thrust- ing across the overturned flap in late deformation stages. We have evaluated a pattern of salt tectonics pre- viously unrecognized in the foothills thrust belt, which may be significant in other parts of the external Colombian Andes. Introduction We aim to provide an explanation for differences in The prolific thrust belt of the eastern foothills of the structural style in the EC external thrust belt. Based on Eastern Cordillera (EC) of Colombia has been inten- seismic lines, maps, the occurrences of salt in old sively investigated
    [Show full text]
  • Paleogeographic Implications of Late Miocene Lacustrine and Nonmarine Evaporite Deposits in the Lake Mead Region: GEOSPHERE; V
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Paleogeographic implications of late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: GEOSPHERE; v. 12, no. 3 Immediate precursors to the Colorado River doi:10.1130/GES01143.1 James E. Faulds1, B. Charlotte Schreiber2, Victoria E. Langenheim3, Nicholas H. Hinz1, Thomas H. Shaw4, Matthew T. Heizler5, Michael E. Perkins6, 19 figures; 7 tables Mohamed El Tabakh7, and Michael J. Kunk8 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA CORRESPONDENCE: jfaulds@ unr .edu 2Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA 3U.S. Geological Survey, Menlo Park, California 94025, USA 4LK Energy, 1729 Harold Street, Houston, Texas 77098, USA CITATION: Faulds, J.E., Schreiber, B.C., Langen- 5New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, New Mexico 87801, USA heim, V.E., Hinz, N.H., Shaw, T.H., Heizler, M.T., 62025 E. White Circle, Salt Lake City, Utah 84109, USA Perkins, M.E., El Tabakh, M., and Kunk, M.J., 2016, 7154-78 71st Avenue, Queens, New York 11367, USA Paleogeographic implications of late Miocene lacus- 8U.S. Geological Survey, Reston, Virginia 20192, USA trine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River: Geosphere, v. 12, no. 3, p. 721–767, doi:10 .1130 /GES01143.1. ABSTRACT the northern Grand Wash, Mesquite, southern Detrital, and northeastern Las Vegas basins. New tephrochronologic data indicate that the upper part of the Received 17 October 2014 Thick late Miocene nonmarine evaporite (mainly halite and gypsum) and halite in the Hualapai basin is ca.
    [Show full text]
  • 16 Microseismic for Geologists 20 March Is National Engineering and Geoscience Month: Design the Future! 23 Aberdeen, Scotland
    16 Microseismic for Geologists 20 March is National Engineering and Geoscience Month: Design the Future! 23 Aberdeen, Scotland $10.00 FEBRUARY 2012 VOLUME 39, ISSUE 2 Canadian Publication Mail Contract – 40070050 RESERVOIR ISSUE 2 • FEBRUARY 2012 1 Since 1927... Follow the Leader. The global industry leader in critical information and insight, IHS continues to invest in the progress of the Canadian energy market so you can get from discovery to drilling in record time. By updating, improving and streamlining our Canadian products and services, we have delivered workflow integration between IHS PETRA® and IHS AccuMap®; created solutions for better access to global resources, from well log databases to subject matter experts; and continued to provide transparency and insight to Canadian energy businesses that need actionable information. See how IHS is investing in Canada at www.followihs.com. Since 1927... February 2012 – VOLUME 39, ISSUE 2 ARTICLES Microseismic for Geologists – Microseismic Hydraulic Fracture Imaging: Part 1 Introduction to Processing and Acquisition ...................................................... 16 CSPG OFFICE March is National Engineering and Geoscience Month: Design the Future! ....... 20 #110, 333 – 5th Avenue SW Calgary, Alberta, Canada T2P 3B6 Tel: 403-264-5610 Fall Education Week .............................................................................................................. 22 Web: www.cspg.org Office hours: Monday to Friday, 8:30am to 4:00pm Aberdeen, Scotland ..............................................................................................................
    [Show full text]
  • Salt Tectonics: Some Aspects of Deformation Mechanics
    Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Salt tectonics: some aspects of deformation mechanics IAN DAVISON, IAN ALSOP & DEREK BLUNDELL Department of Geology, Royal Holloway, University of London, Egham, TW20 OEX, UK This volume is dedicated to studies of the defor- Deformation mechanisms mation of evaporite rocks in pillows and diapirs, and the surrounding sedimentary overburden rocks Burliga, Davison et al., Sans et al., Smith and and sediments. Salt diapirs have become the focus Talbot & Alavi provide new insights into the in- of attention in the last forty years, because of their ternal deformation patterns in salt from mesoscopic observations in deformed bodies. Shear zones are strategic importance in controlling hydrocarbon commonly developed parallel to bedding in potassic reserves, and their unique physical properties enable storage of hydrocarbons and toxic waste. horizons (Sans et al.), where the salt becomes Their economic importance is unique on the Earth's gneissose with X:Z axial ratios of crystals reaching commonly around 4:1 in Zechstein salt (Smith), surface, as evaporites in the Middle East are and Red Sea diapirs (Davison et al., Fig. 1). responsible for trapping up to 60% of its hydro- carbon reserves (Edgell). Relatively undeformed halite layers are carried laterally (Smith) and upwards as rafts between Salt also produces some of the most complex and beautiful deformation features on the Earth's shear zones into diapirs (Bnrliga), and undeformed surface, although few of these surface exposures halite rafts are often transported in a highly-sheared have been examined in detail. The first section of sylvinite matrix (Sans et al.).
    [Show full text]
  • Salt Tectonics Topics
    Salt Tectonics Topics Salt Deposition Salt Movement Diapir Structures Imaging Link to faulting Composition of Salt Domes Salt Deposition Restricted marine basins Mostly halite Minor traces of gypsum or anhydrite Often the two are interbedded and folded Bonneville Salt Flats, Utah Gypsum, Ca(SO ).2H 0 4 2 Halite, NaCl Salt moves driven by buoyancy Sequential Stages of a Salt Diapir •Salt density= 2 g/ cm3 •Salt undergoes no compaction •Mechanically weak - viscous •Shale Density is initially 40% water •Initial Density = 1.8 g/ cm3 •Water expelled during compaction • Final Density = 2.4 g/ cm3 Salt at the Surface Salt Structures -Iran Salt Glacier - Iran Gulf of Gulf of Mexico Mexico Salt Variety of Salt Structures Internal flow of salt Jackson et al. 1990 Detection of Salt Domes Gravity Gravity surveys • Find gravity lows • Low density Seismic Imaging GM-SYS™ Profile model of salt structure integrating seismic reflection, FTG gravity, and magnetic data (EarthExplorer, 2009). Seismic Image of a Salt Dome Geosoft GmsYs-3D model of a salt body embedded in a 3D density volume (Earth Explorer, 2009)_ 3D Seismic Interpretation of Salt Sandbox Experiment Relationship between salt dome and normal faulting Structures http://www.beg.utexas.edu/indassoc/agl/animations/AGL95-MM-001/index.html GUGLIELMO, G., Jr., , B. C. VENDEVILLE, D. D. SCHULTZ-ELA, and M. P. A. JACKSON Bureau of Economic Geology, The University of Texas at Austin, Extension Above Salt Diapir Salt Structures vs. Tectonic Structures •Caused by movement of salt, not by plate
    [Show full text]