The Sheep Pass Formation, a Record of Late Cretaceous and Paleogene Extension Within the Sevier Hinterland, East-Central Nevada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regional Structural Setting of Yucca Mountain, Southwestern Nevada
) i WM RECORD COPY I: // lt- USGS-OFR-84-854 - USGS-OFR-84-854 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY REGIONAL STRUCTURAL SETTING OF YUCCA MOUNTAIN, SOUTHWESTERN NEVADA, AND LATE CENOZOIC RATES OF TECTONIC ACTIVITY IN PART OF THE SOUTHWESTERN GREAT BASIN, NEVADA AND CALIFORNIA by U. J. Carr 06 : . , CD CD. Open-File Report 84-854 Prepared in cooperation with the Nevada Operations Office U.S. Department of Energy (Interagency Agreement DE-AI08-78ET44802) This report is preliminary and has not been reviewed for-conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Company names are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey. Denver, Colorado 1984 ~~- ~ - ~~ ___~~~ Copies of this Open-File Report may be purchased from Open-File Services Secton Branch of Distribution U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 PREPAYMENT IS REQUIRED Price information will be published in the monthly listing 'New Publications of the Geological Survey" FOR ADDITIONAL ORDERING INFORMATION CALL: Commercial: (303) 236-7476 FTS: 776-7476 USGS-OFR-84-854 USGS-OFR-84-854 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Denver, Colorado REGIONAL STRUCTURAL SETTING OF YUCCA MOUNTAIN, SOUTHWESTERN NEVADA, AND LATE CENOZOIC RATES OF TECTONIC ACTIVITY IN PART OF THE SOUTHWESTERN GREAT BASIN, NEVADA AND CALIFORNIA by W. J. Carr CONTENTS Page Abstract................................................................... 1 Introduction.................................................................................................. 4 Structural-physiographic subsections of the southwestern Great Basin ....... 9 Walker Lane belt ........................................ ...... ** 9 Basin-range subsection ..................................................21 Inyo-Mono subsection ............................................................26 Boundary between Inyo-Mono and Walker Lane belt subsections ...... -
Late Cenozoic Paleogeographic Evolution of Northeastern Nevada: Evidence from the Sedimentary Basins
Late Cenozoic paleogeographic evolution of northeastern Nevada: Evidence from the sedimentary basins Alan R. Wallace* U.S. Geological Survey, MS 176, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, Nevada 89557, USA Michael E. Perkins* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA Robert J. Fleck* U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT lier faults are more pronounced east of the hot-spring deposits formed at and near the Tuscarora Mountains, possibly refl ecting a paleosurface in the Chimney, Ivanhoe, and Field and geochronologic studies of Neo- hanging-wall infl uence related to uplift of the Carlin basins as those basins were forming. gene sedimentary basins in northeastern Ruby Mountains-East Humboldt core com- The Neogene geologic and landscape evolu- Nevada document the paleogeographic and plex on the east side of the Elko basin. The tion had variable effects on all of these depos- geologic evolution of this region and the later faults are concentrated along the north- its, including uplift, weathering, supergene effects on major mineral deposits. The broad northwest–trending northern Nevada rift enrichment, erosion, and burial, depending area that includes the four middle Miocene west of the Tuscarora Mountains. The area on the events at any particular deposit. As basins studied—Chimney, Ivanhoe, Car- west of the rift contains major tilted horsts such, this study documents the importance of lin, and Elko, from west to east—was an and alluvium-fi lled grabens, and differential evaluating post-mineralization processes at upland that underwent prolonged middle extension between this more highly extended both regional and local scales when exploring Tertiary exposure and moderate erosion. -
(1987): "Tectonomagmatic Evolution of Cenozoic Extension in the North American Cordillera"
Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Geological Society, London, Special Publications Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera Brian P. Wernicke, Philip C. England, Leslie J. Sonder and Robert L. Christiansen Geological Society, London, Special Publications 1987, v.28; p203-221. doi: 10.1144/GSL.SP.1987.028.01.15 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera B.P. Wernicke, R.L. Christiansen, P.C. England & L.J. Sonder SUMMARY: The spatial and temporal distributions of Cenozoic extension and magmatism in the Cordillera suggest that the onset of major crustal extension at a particular latitude was confined to a relatively narrow belt (< 100 km, pre-extension) and followed the onset of intermediate and silicic magmatism by no more than a few million years. Extension began in early Eocene time in southern British Columbia, northern Washington, Idaho and Montana. Farther S, extension began at about the Eocene- Oligocene boundary in the Great Basin and slightly later in the Mojave-Sonora Desert region. The intervening area, at the latitude of Las Vegas, remained quiescent until mid- Miocene time. Compositional and isotopic characteristics of most pre-Miocene magmas are consistent with their containing major components of melted continental crust. -
Deformation of Intrasalt Competent Layers in Different Modes of Salt Tectonics Mark G
Solid Earth Discuss., https://doi.org/10.5194/se-2019-49 Manuscript under review for journal Solid Earth Discussion started: 25 March 2019 c Author(s) 2019. CC BY 4.0 License. Deformation of intrasalt competent layers in different modes of salt tectonics Mark G. Rowan1, Janos L. Urai2, J. Carl Fiduk3, Peter A. Kukla4 1Rowan Consulting, Inc., Boulder, CO 80302, USA 5 2Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, 52056 Aachen, Germany 3Fiduk Consulting LLC, Houston, TX 77063, USA 4Geological Institute, Energy and Mineral Resources, RWTH Aachen University, 52056 Aachen, Germany Correspondence to: Mark G. Rowan ([email protected]) 10 Abstract. Layered evaporite sequences (LES) comprise interbedded weak layers (halite and, commonly, bittern salts) and strong layers (anhydrite and usually non-evaporite rocks such as carbonates and siliciclastics). This results in a strong rheological stratification, with a range of effective viscosity up to a factor of 105. We focus here on the deformation of competent intrasalt beds in different modes of salt tectonics using a combination of conceptual, numerical and analog models, and seismic data. In bedding-paralell extension, boudinage of the strong layers forms ruptured stringers, within a 15 halite matrix, that become increasingly isolated with increasing strain. In bedding-parallel shortening, competent layers tend to maintain coherency while forming harmonic, disharmonic, and polyharmonic folds, with the rheological stratification leading to buckling and fold growth by bedding-parallel shear. In differential loading, extension and the resultant stringers dominate beneath suprasalt depocenters while folded competent beds characterize salt pillows. Finally, in tall passive diapirs, stringers generated by intrasalt extension are rotated to near vertical in tectonic melanges during upward flow of salt. -
Tectonic Denudation of Mesozoic Contractile Structures by a Low-Angle Normal Fault and Associated Faults, Southern White Pine Range, Nevada" (1995)
UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1995 Tectonic denudation of Mesozoic contractile structures by a low- angle normal fault and associated faults, southern White Pine Range, Nevada Holly Langrock University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, and the Tectonics and Structure Commons Repository Citation Langrock, Holly, "Tectonic denudation of Mesozoic contractile structures by a low-angle normal fault and associated faults, southern White Pine Range, Nevada" (1995). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1420. http://dx.doi.org/10.34917/3339725 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. TECTONIC DENUDATION OF MESOZOIC CONTRACTILE STRUCTURES BY A LOW-ANGLE NORMAL FAULT AND ASSOCIATED FAULTS, SOUTHERN WHITE PINE RANGE, NEVADA by Holly Langrock A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Department of Geoscience University of Nevada, Las Vegas December 1995 The thesis of Holly Langrock for the degree of Master of Science in Geology is approved. -
DIVISION C—OTHER PROVISIONS TITLE III—WHITE PINE COUNTY CON- SERVATION, RECREATION, and DE- VELOPMENT Subtitle A—Land Disp
G:\COMP\109\WHITE PINE COUNTY CONSERVATION, RECREATION, A....XML White Pine County Conservation, Recreation, and Development Act of 2006 [Title III of division C of Public Law 109–432] [As Amended Through P.L. 116–9, Enacted March 12, 2019] øCurrency: This publication is a compilation of the text of Public Law 109–432. It was last amended by the public law listed in the As Amended Through note above and below at the bottom of each page of the pdf version and reflects current law through the date of the enactment of the public law listed at https:// www.govinfo.gov/app/collection/comps/¿ øNote: While this publication does not represent an official version of any Federal statute, substantial efforts have been made to ensure the accuracy of its contents. The official version of Federal law is found in the United States Statutes at Large and in the United States Code. The legal effect to be given to the Statutes at Large and the United States Code is established by statute (1 U.S.C. 112, 204).¿ AN ACT To amend the Internal Revenue Code of 1986 to extend expiring provisions, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, * * * * * * * DIVISION C—OTHER PROVISIONS * * * * * * * TITLE III—WHITE PINE COUNTY CON- SERVATION, RECREATION, AND DE- VELOPMENT SEC. 301. AUTHORIZATION OF APPROPRIATIONS. There are authorized to be appropriated such sums as are nec- essary to carry out this title. SEC. 302. ø16 U.S.C. 1241 note¿ SHORT TITLE This title may be cited as the ‘‘White Pine County Conserva- tion, Recreation, and Development Act of 2006’’. -
Ni 43-101 Technical Report South Railroad Valley
NI 43-101 TECHNICAL REPORT on the SOUTH RAILROAD VALLEY LITHIUM PROPERTY Nye County, Nevada by Edward Lyons, P.Geo. TEKHNE RESEARCH INC. Victoria, BC for BLUE EAGLE LITHIUM INC. Henderson, NV Effective Date 11 October 2018 Issue Date 15 October 2018 CERTIFICATE OF AUTHOR I, Edward Lyons, P.Geo., as an author of the technical report entitled “NI 43-101 Technical Report: South Railroad Valley Lithium Property, Nye County, Nevada” dated 15 October 2018 with the effective date of 11 October 2018 and prepared for Blue Eagle Lithium Inc. (the “Issuer”), do hereby certify that: I am currently employed as a Geological Consultant and Director of Tekhne Research Inc. with offices at 1067 Portage Road, Victoria, BC V8Z 1L1. 1) I graduated with a Bachelor of Science (Honours) degree in Geology from the University of Missouri at Rolla in 1970. 2) I am a Professional Geoscientist enrolled with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC) (Member # 122136), the Ordre des géologues du Quebec (OGQ) (Member # 701), and the Professional Engineers and geoscientist of Newfoundland and Labrador (PEGNL) (Member # 05711). 3) I have worked as a geologist for a total of 46 years since my graduation from university. My experience has included exploration and technical management on base-metal sulphide deposits in Canada for over 30 years and base-metal oxide deposits in Chile and Mexico (four years), precious metal (Au-Ag) in Canada and Mexico (six years), graphite in Canada (14 years, including as Qualified Person for ten NI 43-101 reports), and iron deposits in BC, QC, and NL (seven years, including acting as Qualified Person on five NI 43-101 reports). -
Salt Tectonics and Its Effect on Sediment Structure and Gas Hydrate Occurrence in the Northwestern Gulf of Mexico from 2D Multichannel Seismic Data
A Publication of the Gulf Coast Association of Geological Societies www.gcags.org SALT TECTONICS AND ITS EFFECT ON SEDIMENT STRUCTURE AND GAS HYDRATE OCCURRENCE IN THE NORTHWESTERN GULF OF MEXICO FROM 2D MULTICHANNEL SEISMIC DATA Dan’l Lewis and William Sager Department of Oceanography, Texas A&M University, MS 3146, College Station, Texas 77843–3146, U.S.A. ABSTRACT This study was undertaken to investigate mobile salt and its effect on fault structures and gas hydrate occurrence in the northwestern Gulf of Mexico. Industry 2D multichannel seismic data were used to investigate the effects of salt within an area of 7577 mi2 (19,825 km2) on the Texas continental slope in the northwestern Gulf of Mexico. The western half of the study area is characterized by a thick sedimentary wedge and isolated salt diapirs whereas the eastern half is characterized by a massive and nearly continuous salt sheet topped by a thin sedimentary section. This difference in salt characteristics marks the edge of the continuous salt sheets of the central Gulf of Mexico and is likely a result of westward decline of original salt volume. Be- neath the sedimentary wedge in the western part of the survey, an anomalous sedimentary package was found, that is described here as the diapiric, gassy sediment package (DGSP). The DGSP is highly folded at the top and is marked by tall, diapiric fea- tures. It may be either deformed shale or the toe of a complex thrust zone detaching the sedimentary wedge from deeper layers. The dataset was searched for the occurrence of bottom simulating reflectors (BSRs) because they are widely accepted as a geo- physical indicator of gas trapped beneath gas hydrate deposits that are known to occur farther east in the Gulf. -
Three-Dimensional Evolution of Salt-Controlled Minibasins: Interactions, Folding, and Megaflap Development
1 Aapg Bulletin Achimer September 2016, Volume 100 Issue 9 Pages 1419-1442 http://dx.doi.org/10.1306/03101614087 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00352/46328/ © 2016. The American Association of Petroleum Geologists. All rights reserved. Three-dimensional evolution of salt-controlled minibasins: Interactions, folding, and megaflap development Callot Jean-Paul 1, *, Salel Jean-Francois 2, *, Letouzey Jean 3, *, Daniel Jean-Marc 4, *, Ringenbach Jean-Claude 5, * 1 Univ Pau & Pays Adour, Ave Univ, F-64013 Pau, France. 2 Total E&P USA, 1201 Louisiana St,Suite 1800, Houston, TX 77002 USA. 3 Univ Paris 06, Univ Paris 04, Inst Sci Terre Paris iSTeP, 4 Pl Jussieu, F-75005 Paris, France. 4 IFREMER, F-29280 Plouzane, France. 5 Total SA, Ctr Sci & Tech Jean Feger, Ave Larribau, F-64000 Pau, France. * Corresponding authors email addresses : [email protected] ; [email protected] ; [email protected] ; [email protected] ; [email protected] ; Abstract : A megaflap, or an overturned, folded, sedimentary-basin edge, is a classic feature of salt-controlled basins, formed during the inception of salt allochthony. To illustrate the relative importance of the balance between salt and sediment inputs, basin rheology, and tectonism resulting from basin interactions in the development of megaflaps, a set of analog experiments were performed in a computed tomography scanner. Sediments are modeled using both granular material and a mix of granular and viscous material and salt as purely viscous material. Uneven sedimentary loading and associated salt flow localize primary minibasins, which then migrate and expand laterally until sufficient thickness is reached to pin the downbuilding phase. -
Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models
©2005 Society of Economic Geologists, Inc. Economic Geology 100th Anniversary Volume pp. 451–484 Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models JEAN S. CLINE,† University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454010, Las Vegas, Nevada 89154-4010 ALBERT H. HOFSTRA, Mineral Resources Program, U.S. Geological Survey, Mail Stop 973, Box 25046, Denver, Colorado 80225 JOHN L. MUNTEAN, Nevada Bureau of Mines and Geology, Mail Stop 178, University of Nevada, Reno, Nevada 89557-0088 RICHARD M. TOSDAL, AND KENNETH A. HICKEY Mineral Deposit Research Unit, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4 Abstract Carlin-type Au deposits in Nevada have huge Au endowments that have made the state, and the United States, one of the leading Au producers in the world. Forty years of mining and numerous studies have pro- vided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model re- mains elusive. The genesis of the deposits has been difficult to determine owing to difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, and because of postore weathering and oxidation. In addition, other approximately contemporaneous precious metal deposits have overprinted, or are overprinted by, Carlin-type mineralization. Recent geochronological studies have led to a consensus that the Nevada deposits formed ~42 to 36 m.y. ago, and the deposits can now be evaluated in the context of their tectonic setting. Continental rifting and deposi- tion of a passive margin sequence followed by compressional orogenies established a premineral architecture of steeply dipping fluid conduits, shallow, low dipping “traps” and reactive calcareous host rocks. -
Railroad Valley As a Result of the Survey
State of Nevada WATER PLANNING REPORT Prepared by the State Engineer's Office, the Agricultural Experiment Station University of Nevada, Reno and the Soil Conservation Service, U.S.D.A. MAY 1971 1'1.WO ). DeMICCO ROlAND D. WESTERGAJlD D_ ..... - 89701 ~AUComm~b u.. Stole ~. D1.'O"Woft ofWCller~ TO THE CITIZENS OF THE STATE OF NEVADA This Report constitutes a part of the State Water Planning effort and was prepared cooperatively by the Division of Water Resources, the Agricultural Experiment Station, University of Nevada, Reno, and the soil Conser vation Service, United States Department of Agriculture. The statewide reconnaissance soil survey is designed to furnish basic soil data needed to evaluate a variety of potential uses. Soil Hydrologic Groups, Soil Materials Sources, Soil Erosion Potential and Soil Irrigability Classes are among the several interpretive evaluations made in Railroad Valley as a result of the survey. The soils of the Railroad Valley area were identified~ mapped, and named according to the U. S. Comprehensive System of Soil Classi fication. In addition to being used in the development of the State Water Plan, the progressive reconnaissance soil sur vey will also contribute to an eventual soil map of Nevada which will be a basic resource data source for state, re gional and local land evaluation and development planning. Respectfully, (J jl J~ ~~~we~tergar~11.0 KJZ} State Engineer LIST OF TABLES TABLE 1. Temperature and Precipitation Data for Diablo Highway Maintenance Station (1959·19691 .... 25 TABLE 2. Temperature and Precipitation Data for Currant Highway Maintenance Station (1963-19691 .. 26 TABLE 3. -
Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto without sustained crustal reservoirs between the episodes.