Tyers Phd 2013.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Adaptation, Reinforcement Or Sexual Selection
Japan. J. Ichthyol. 4 0 ( 1): 15- 21, 1993 4 0 ( 1): 15- 21, 1993 Sexual Selection and Genetic Relationships of a Sibling Species Complex of Bower Building Cichlids in Lake Malawi, Africa Kenneth R. McKaye,1 James H. Howard,2 Jay R. Stauffer, Jr.,3 Raymond P. Morgan II1 and Fortune Shonhiwa4 1 Appalachian Environmental Laboratory, Center for Estuarine and Environmental Studies, University of Maryland, Frostburg, MD 21532, USA 2 Department of Biology, Frostburg State University, Frostburg, MD 21532, USA 3 School of Forest Resources, Pennsylvania State University, University Park, PA 16802, USA 4 Department of National Parks and Wildlife Management, Harare, Zimbabwe (Received December 16, 1992; in revised form January 10, 1993; accepted February 18, 1993) Abstract Protein electromorphs of five taxa of the sand dwelling genus Tramitichromis from Lake Malawi were examined by starch-gel electrophoresis. Twenty-four enzyme loci were examined. No diagnostic alleles were discovered which distinguished the different taxa; however, nine loci were polymorphic in at least one taxa with unbiased mean heterozygosities ranging from 6.9 to 12.6%. The bower form of these five taxa, which earlier have been referred to as sibling species was also analyzed. Results from this study provide evidence that bower form in these cichlid taxa is correlated with genetic distance measurements. The data suggest that the taxa are isolated ‘sibling’ species, which recently diverged, or that they are ‘incipient’ species with minimal gene flow between bower building morphs. The congruence of the allozyme data suggests a genetic basis for bower form. Variation in bower form is hypothesized to arise from nonadaptive differences in female choice, which leads to reproductively isolated species as predicted by Fisher’s model of runaway sexual selection. -
1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. -
Cichlid Diversity, Speciation and Systematics: Examples from the Great African Lakes
Cichlid diversity, speciation and systematics: examples from the Great African Lakes Jos Snoeks, Africa Museum, Ichthyology- Cichlid Research Unit, Leuvensesteenweg 13, B-3080 Ter vuren,.Belgium. Tel: (32) 2 769 56 28, Fax: (32) 2 769 56 42(e-mail: [email protected]) ABSTRACT The cichlid faunas of the large East African lakes pro vide many fascina ting research tapies. They are unique because of the large number of species involved and the ir exceptional degree ofendemicity. In addition, certain taxa exhibit a substantial degree of intra~lacustrine endemism. These features al one make the Great African Lakes the largest centers of biodiversity in the vertebrate world. The numbers of cichlid species in these lakes are considered from different angles. A review is given of the data available on the tempo of their speciation, and sorne of the biological implications of its explosive character are discussed. The confusion in the definition of many genera is illustrated and the current methodology of phylogenetic research briefly commented upon. Theresults of the systematic research within the SADC/GEFLake Malawi/NyasaBiodiversity Conservation Project are discussed. It is argued that systematic research on the East African lake cichlids is entering an era of lesser chaos but increasing complexity. INTRODUCTION The main value of the cichlids of the Great African Grea ter awareness of the scientific and economi Lakes is their economie importance as a readily cal value of these fishes has led to the establishment accessible source of protein for the riparian people. In of varioüs recent research projects such as the three addition, these fishes are important to the specialized GEF (Global Environmental Facility) projects on the aquarium trade as one of the more exci ting fish groups larger lakes (Victoria, Tanganyika, Malawi/Nyasa). -
Fish, Various Invertebrates
Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations ................................................. -
The Role of Flow Sensing by the Lateral Line System in Prey Detection in Two African Cichlid Fishes
University of Rhode Island DigitalCommons@URI Open Access Dissertations 9-2013 THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES Margot Anita Bergstrom Schwalbe University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Schwalbe, Margot Anita Bergstrom, "THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES" (2013). Open Access Dissertations. Paper 111. https://digitalcommons.uri.edu/oa_diss/111 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES BY MARGOT ANITA BERGSTROM SCHWALBE A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2013 DOCTOR OF PHILOSOPHY DISSERTATION OF MARGOT ANITA BERGSTROM SCHWALBE APPROVED: Dissertation Committee: Major Professor Dr. Jacqueline Webb Dr. Cheryl Wilga Dr. Graham Forrester Dr. Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2013 ABSTRACT The mechanosensory lateral line system is found in all fishes and mediates critical behaviors, including prey detection. Widened canals, one of the four patterns of cranial lateral line canals found among teleosts, tend to be found in benthic fishes and/or fishes that live in hydrodynamically quiet or light-limited environments, such as the deep sea. -
Gonad Development in Midas Cichlids and the Evolution of Sex Change in Fishes
EVOLUTION & DEVELOPMENT 13:4, 352–360 (2011) DOI: 10.1111/j.1525-142X.2011.00490.x Gonad development in Midas cichlids and the evolution of sex change in fishes Ronald G. OldfieldÃ,1 University of Michigan, Department of Ecology and Evolutionary Biology, Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109, USA ÃAuthor for correspondence (email: [email protected]) 1Present address: Case Western Reserve University, Department of Biology, 10900 Euclid Ave., Cleveland, OH 44106. SUMMARY Some fishes mature and function as one sex aggressive behavior and sex in juveniles. I later demonstrated and later transform to the other sex in response to social that socially controlled sex determination does not typically interactions. Previous evidence suggested that a change in occur in the Midas cichlid and closely related species and developmental timing may be involved in the evolution of adult supported an alternative mechanism to explain large body sex change in fishes. The most recent support for this idea size in adult males. Finally, in the current study I analyze came from reports that sex in the Midas cichlid, Amphilophus gonad histology of fish from the same population used by the citrinellus, was determined by social conditions experienced at original authors and lay to rest the idea of socially controlled the juvenile stage. Differentiation as a male was reported to be sex determination in this species. Recent observations of dependent on large body size relative to group-mates, and socially controlled sex determination in juveniles of species thought to be mediated through aggressive interactions. Here that typically change sex at the adult stage are examples of I demonstrate that socially controlled sex determination does phenotypic plasticity, not genetic variation. -
Chambo: Is It Taste Or Something Else? Preference and Acceptability
Aqua-Fish Tech.. E f * . twit. ;Vs>: 2, iV.v. ii/fV? Chambo: Is it taste or something else? Preference and acceptability of roasted, fried and boiled Oreochrontis spp, (Chambo), Rhamphochromis spp (Ncheni) and Bagrus me- ridionalis (Kampango) from Lake Malawi 'K. Kaunda,, 2D. Maliro, 3M. Mphepo, 4S. Khaila SL. Kamanga, 6A, Mwangwela & '(). Cliapotoka ' Aquaculture and Fisheries Science Department, Bunda College Box 219, Lilongwe : Rural Development Department, Bunda College, Box 219 Lilongwe 1 World Vision International, Box 2050, Blantyre 4 Centre for Research and Development, Bunda College, Box 219 Lilongwe. Malawi 5 Animal Science Department, Bunda College, Box 219 Lilongwe Abstract A study to determine preference and acceptability of roasted, fried and boiled Oreochromis spp, (Chambo), Rhamphochromis spp (Ncheni) and Bagrus meridional is (Kampango) from Lake Malawi was conducted in Oc tober 2002, at Bunda College. A sensory panel of 73 people from Bunda College community responded to a structured questionnaire and carried out a sensory evaluation on unidentified fish samples to determine the most preferred fish species. Results from a structured questionnaire showed that Chambo was the most pre ferred species at the market, while the sensory evaluation revealed that most people (65% and 93%) ranked Ncheni as first choice for taste and preference, respectively. Results suggest that while people perceive Chambo as the best fish and hence escalating its demand and therefore its price, Chambo may not be the best in terms of taste. Introduction naires were administered to an untrained sensory The bulk of fish in Malawi is supplied front Lakes panel composed of 73 members. The panellists com Malawi and Malombe. -
View/Download
CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name -
A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users. -
Patterns and Process During the Diversification of the Cichlid Fishes in Lake Malawi, Africa Michael R
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2006 Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa Michael R. Kidd University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Kidd, Michael R., "Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa" (2006). Doctoral Dissertations. 342. https://scholars.unh.edu/dissertation/342 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PATTERNS AND PROCESS DURING THE DIVERSIFICATION OF THE CICHLID FISHES IN LAKE MALAWI, AFRICA BY MICHAEL R. KIDD BA, Williams College, 1991 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology September, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3231355 Copyright 2006 by Kidd, Michael R. All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D
MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 2. No. 2, June. pp. 158-165. 1993 Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D. Kocher , * '1 Janet A. Conroy,* Kenneth R. McKaye,* and Jay R. Stauffer* * Department of Zoology, University of New Hampshire, Durham, New Hampshire 03824; t Appalachian Environmental Laboratory, University of Maryland, Frostburg, Maryland 21532; t School of Forest Resources, Pennsylvania State University, University Park, Pennsylvania 16802 Received March 22, 1993; revised June 29, 1993 ancestor for the Lake Victoria cichlid flock (Sage et al., The species flocks of cichlid fishes in the lakes of East 1984; Meyer et al., 1990). The mechanisms by which Africa are the most spectacular example of adaptive so many species have arisen in such a short time, radiation among living vertebrates. Similar highly de within closed lake basins, are a fascinating subject for rived morphologies are found among species in differ research. ent lakes. These similarities have been variously inter A separate, monophyletic origin for the species flock preted either as evidence for migration of ancestral in each lake has often been assumed, partly because species between the lakes, or of striking convergence of the high levels of endemicity found in the cichlid of morphology. To distinguish among these competing fauna, and partly because of the ancient and isolated hypotheses we sequenced a portion of the mitochon history of each lake (Fryer and lies, 1972). The lake drial UNA control region from six pairs of morphologi basins have arisen separately by a gradual lengthen cally similar taxa from Lakes Malawi and Tanganyika. -
Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa)
Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by M.K. Oliver, Ph.D. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by Michael K. Oliver, Ph.D. Peabody Museum of Natural History, Yale University Updated 24 June 2020 First posted June 1999 The cichlids of Lake Malawi constitute the largest vertebrate species flock and largest lacustrine fish fauna on earth. This list includes all cichlid species, and the few subspecies, that have been formally described and named. Many–several hundred–additional endemic cichlid species are known but still undescribed, and this fact must be considered in assessing the biodiversity of the lake. Recent estimates of the total size of the lake’s cichlid fauna, counting both described and known but undescribed species, range from 700–843 species (Turner et al., 2001; Snoeks, 2001; Konings, 2007) or even 1000 species (Konings 2016). Additional undescribed species are still frequently being discovered, particularly in previously unexplored isolated locations and in deep water. The entire Lake Malawi cichlid metaflock is composed of two, possibly separate, endemic assemblages, the “Hap” group and the Mbuna group. Neither has been convincingly shown to be monophyletic. Membership in one or the other, or nonendemic status, is indicated in the checklist below for each genus, as is the type species of each endemic genus. The classification and synonymies are primarily based on the Catalog of Fishes with a few deviations. All synonymized genera and species should now be listed under their senior synonym. Nearly all species are endemic to L. Malawi, in some cases extending also into the upper Shiré River including Lake Malombe and even into the middle Shiré.