The United States Geological Survey in Alaska: Accomplishments During 1979

Total Page:16

File Type:pdf, Size:1020Kb

The United States Geological Survey in Alaska: Accomplishments During 1979 The United States Geological Survey in Alaska: Accomplishments during 1979 Nairn R. D. Albert and Travis Hudson, Editors GEOLOGICAL SURVEY CIRCULAR 823-6 United States Department of the Interior JAMES G. WATT, Secretary Geological Survey Doyle G. Frederick, Acting Director Free on application to Branch of Distribution, U.S. Geological Survey 604 South Picken Street, Alexandria, VA 22304 CONTENTS Page Page Abstract _-.-----------------------+---L-------------------------- B1 P. BrosgB, H. N. Reiser, and J. T. Dutro, Jr. .---B24 Summary of important results----------------------------a-a- 1 East-central Alaska ---------------------------..----------25 Introduction --------------.----------------.-2L------------1 New chemical and isotope data for the hot Statewide Project -------------------+---+----------------- 1 springs along Big Windy Creek, Circle A-1 Landsat data interpretation in the south-central quadrangle, Alaska, by Terry E. C. Keith, Brooks Range and in southeastern Alaska, by Theresa S. Presser, and Helen L. Foster -------.25 James R. LeCompte and Wm. Clinton Steele -- 1 Laumontite occurrence in the Circle A-1 quad- Northern Aaska3 rangle, Alaska, by Terry E. C. Keith, Ivan National Petroleum Reserve in Alaska--data re- Barnes, and Helen L. Foster---.------------------ !@ lease, by Robert D. Carter---------._-_-----L----- 3 Geologic reconnaissance of the east half of Kan- Depositional history of the Nanushuk Group and tishna River quadrangle and adjacent areas, related strata, by C. M. Molenaar -+------------- 4 by Robert M. Chapman and Warren Yeend----. 30 Compositional variation in sandstones of the Ordovician graptolites and early Paleozoic Nanushuk Group, Arctic North Slope, by radiolarians in the Lake Minchumina area date Susan Bartsch-Winkler and A. C. Huffman __.6 a regional shale and chert belt, by Robert M. Minimum age of beach deposits north of Teshek- Chapman, Michael Churkin, Jr., Claire Car- puk Lake, Arctic Coastal Plain, by L. David ter, and James H. Trexler, Jr. ------.__-_-------.32 Carter and Stephen W. Robinson ---------------- 8 Geochronologic studies in the Yukon-Tanana Up- Paleoenvironmenb during deposition of a section land, east-central Alaska, by John N. of the Gubik Formation exposed along the Aleinikoff, Cynthia Dusel-Bacon, and Helen L. lower Colville River, North Slope, by R. E. Foster --------------------+---7-.L--.LL------------- 34 Nelson ----------------------------+----------------- 9 A minimum age for Prindle Volcano, Yukon- New stratigraphic assignment for rocks along Tanana Upland, by Helen L. Foster ------------.37 Igilatvik (Sabbath) Creek, William 0. Douglas Metalliferous mineral resource potential of the Arctic Wildlife Range, Alaska, by Robert L. Big Delta quadrangle, by W. D. Menzie, H. L. Detterman and Robert A. Spicer--__------------- 11 Foster, and D. L. Mosier L+---u-____--------------- 38 Further notes on the ground-water supply be- West-central Alaska --_--------------------------------+7- 39 neath Selin Creek near Cape Lisburne, north- K-Ar age measurements on obsidian from the western Alaska, by Alvin J. Feulner and John Little Indian River locality in interior Alaska, R. Williams --.AL-.._-------------------------.-..A. 12 by Thomas P. Miller and Marvin A. Lanphere-- 39 Mafic rocks in the Avan Hills ultramafic com- Lower Paleozoic platform carbonate sequence in plex, De Long Mountains, by Jay Zimmerman, the Medfra quadrangle, west-central Alaska, Charles 0.Frank, and Sean Bryn-----_---__A__L. 14 by J. T. Dutro, Jr., and W. W. Patton, Jr..----. 42 Gravity measurements useful in exploration and Southwestern Alaska -------------------------------.-----44 evaluation of the Nimiuktuk barite deposit, by Lower Paleozoic radiolarian chert and associated David F. Barnes --.--------------AL----------------- 15 rocks in the Tikchik Lakes area, southwestern Late Mississippian to Pennsylvanian radiolarian Alaska, by J. M. Hoare and D. L. Jones --------- 44 assemblages in the Siksikpuk( ? ) Formation at K-Ar ages on intrusive rocks and altered zonea in Nigu Bluff, Howard Pass quadrangle, Alaska, the Chignik and Sutwik Island quadrangles, by by Benita L. Murchey, Patricia B. Swain, and Frederic H. Wilson ------__-,.A___---------~------- 45 Steven Curtis ------------------_-.-----------------17 Southern Alaska-----.--------------------------- + -----+--- 46 Depositional model for the fluvial Upper Devo- Revised ages of paleozoic and Mesozoic rocks in nian Kanayut Conglomerate, Brooks Range, the Talkeetna quadrangle, south-central Alaska, by T. H. Nilsen, W. P. Brosg6, J. T. Alaska, by D. L. Jones, N. J. Silberling, Bruce Dutro, Jr., and T. E. Moore ------.---,-----------20 Wardlaw, and Don Richter........................ 46 Episodic Holocene alluviation in the central Evidence for northwestward thrusting of the Brooks Range: chronology, correlations, and Talkeetna superterrane, and its regional sig. climatic implications, by Thomas D. Hamilton- 21 nificance, by BQla Csejtey, Jr. and Dennis R. Significance of Middle Devonian clastic rocks in St. An 49 the eastern Brooks Range, Alaska, by William Recognition of the Wrangellia terrane in the Pagt Page Southern Alaska-Continued Southern Alaska-Continued Clearwater Mountains and vicinity, south- cance of Middle and Upper Jurassic sandstone central Alaska, by N. J. Silberling, D. H. Rich- from Tuxedni Bay, Cook Inlet, Alaska, by ter, and D. L. Jones -------_-..___.----------L...--R51 Robert M. Egbert and Leslie B. Magoon -.----.-B86 Paleolatitude of Triassic basalt in the Cleanvater Petrography and provenance of Upper Creta- Mountains, south- central Alaska, by John W. ceous sandstone from Saddle Mountain in the Hillhouse and Sherman Gromm6 ------------.._-55 Iniskin-Tuxedni area, lower Cook Inlet, Structural relations along the leading edge of the Alaska, by Robert M. Egbert ------------------..-88 Wrangellia terrane in the Cleanvater Moun- Southeastern Alaska 90 tains, Alaska, by Peter J. Coney, N. J. Silber Emplacement age of the Crillon-La Perouse plu- ling, D. L. Jones, and D. H. Richter --------+.... 56 ton, Fairweather Range, by Travis Hudson and Paleomagnetic investigation in the Chulitna ter- George Plafker -.---------------------------.-.-----90 rane, south-central Alaska, by John W. Hill- Carboniferous biostratigraphy, southeastern house and Sherman GrommE 7---.--------.._...-58 Alaska, by J. T. Dutro, Jr., A. K. Armstrong, K-Ar ages of the Nikolai Greenstone from the R. C. Douglass, and B. L. Mamet 94 McCarthy quadrangle, Alaska-the "docking" The Coast plutonic complex sill, southeastern of Wrangellia, by Miles L. Silberman, Edward Alaska, by David A. Brew and Arthur B. Ford -- 96 M. MacKevett, Jr., Cathy L. Connor, Paul R. Orthogneiss of Mount Juneau-an early phase of Klock, and Georgiana Kalechitz 61 Coast Mountains plutonism involved in Rarro- Recognition of two subterranes within the vian regional metamorphism near Juneau, by Wrangellia terrane, southern Mount Hayes Arthur B. Ford and David A. Brew .----_---------99 quadrangle, Alaska, by Warren J. Nokleberg, The nature and position of the Border Ranges Nairn R. D. Albert, Paige L. Herzon, Ronny T. fault on Chichagof Island, by John Decker and Miyaoka, and Richard E. Zehner ------------.-.-.64 Bruce B. Johnson ------.-.._-.---------------A---- 102 Cross section showing accreted Andean-type arc Upper Triassic volcanogenic massive-sulfide and island arc terranes in southwestern Mount metallogenic province identified in southeast- Hayes quadrangle, Alaska, by Warren J. Nok- ern Alaska, by Henry C. Berg ---------...--------104 leberg, Nairn R. D. Albert, Paige L. Herzon, Newly recognized alkali granite stock, south- Ronny T. Miyaoka, and Richard E. Zehner -.----66 western Kupreanof Island, Alaska, by David A. Placer gold deposits, Mount Hayes quadrangle, Brew, Ronald A. Sonnevil, Susan J. Hunt, and Alaska, by Warren Yeend ._..-----..-.------A-..-. 68 A. B. Ford .-------------.-..---------------....----108 Tectonic implications of framework grain Structural and stratigraphic significance of mineralogy of sandstone from the Yakutat Upper Devonian and Mississippian fossils Group, by G. R. Winkler and George Plafker--- 68 from the Cannery Formation, Kupreanof Is- Paleomagnetic evidence for northward move- land, southeastern Alaska, by D. L. Jones, H. ment of the Chugach terrane, southern and C. Berg, Peter Coney, and Anita Harris-L...._.- 109 southeastern Alaska,lby Sherman Grommi. and The Chilkat-Prince of Wales plutonic province, John W. Hillhouse ----------------.--..-----"------70 southeastern Alaska, by Ronald A. Sonnevil---. 112 Blocks and belts of blueschist and greenschist in Age of basalt flows in the Blue River valley, Brad- the northwestern Valdez quadrangle. by G. R. field Canal quadrangle, by Raymond L. Elliot, Winkler, R. J. Miller, and J. E. Case ------------ 72 Richard D. Koch, and Stephen W. Robinson --- 115 Layered gahbroic belt of regional extent in the New data concerning the geology of the North Valdez quadrangle, by G. R. Winkler, R. J. Bradfield River iron prospect, southeastern Miller, M. L. Silberman, Arthur Grantz, J. E. Alaska, by Ronald A. Sonnevil-----_.-.....7------ 117 Case, and W. J. Pickthorn ._.._--...-------------74 Offshore Alaska ------------ -".-..7------------------....-* 118 Surficial deposits of the Valdez quadrangle, Preliminary interpretation of the geologic struc- Alaska, bv John R. Williams and Kathleen M. ture beneath the northern Bering sea shelf, Johnson 76 including Norton Basin, by Michael A. Fisher, Deglaciation and sea-level
Recommended publications
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
    The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales.
    [Show full text]
  • Geological Survey Research 1965
    GEOLOGICAL SURVEY RESEARCH 1965 Chapter D GEOLOGICAL SURVEY PROFESSIONAL PAPER 525-D Scientific notes and summaries of investiga- tions by members of the Conservation, Geo- logic, and Water Resources Divisions in geology, hydrology, and related fields - UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price $2 GEOLOGIC STUDIES Geochronology Page Implications of new radiometric ages in eastern Connecticut and Massachusetts, by Robert Zartman, George Snyder, T. W.Stern, R.F. Marvin,.and R.C.Bucknam-----------,------------------------------------------------ Reconna&sance of mineral ages of plutons in Elko County, Nev., and vicinity, by R. R. Coats, R. F. Marvin, and T.W.Stern---------------------------------------------------------------------i---------------------- Juragsic plutonism in the Cook Inlet region, Alaska, by R. L. Detterman, B. L. Reed, and M. A. Lanphere ------ ------ Age and distribution of sedimentary zircon as a guide to provenance, by R. S. Houston and J. F. Murphy - - - - - - - - - - - - Carboniferous isotopic age of the metamorphism of the Salmon Hornblende Schist and Abrams Mica Schist, southern Klamath Mountains, Calif.,*by M. A. Lanphere and W. P. Irwin- ------------------,-------------------------- Radiocarbon dates from lliamna Lake, Alaska, by R. L. Detterman, B. L. Reed, and Meyer Rubin
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Mineralogy of Non-Silicified Fossil Wood
    Article Mineralogy of Non-Silicified Fossil Wood George E. Mustoe Geology Department, Western Washington University, Bellingham, WA 98225, USA; [email protected]; Tel: +1-360-650-3582 Received: 21 December 2017; Accepted: 27 February 2018; Published: 3 March 2018 Abstract: The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy. Keywords: fossil wood; mineralogy; paleobotany; permineralization 1. Introduction Non-silica minerals that cause wood petrifaction include calcite, apatite, iron pyrites, siderite, hematite, manganese oxide, various copper minerals, fluorite, barite, natrolite, and the chromium- rich smectite clay mineral, volkonskoite. This report provides a broad overview of woods fossilized with these minerals, describing specimens from world-wide locations comprising a diverse variety of mineral assemblages. Data from previously-undescribed fossil woods are also presented. The result is a paper that has a somewhat unconventional format, being a combination of literature review and original research. In an attempt for clarity, the information is organized based on mineral composition, rather than in the format of a hypothesis-driven research report.
    [Show full text]
  • Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
    Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5
    [Show full text]
  • Coal Exploration Permit Application for Mental Health Land Coal Lease Mht 9200375 Chickaloon Coal Project
    COAL EXPLORATION PERMIT APPLICATION FOR MENTAL HEALTH LAND COAL LEASE MHT 9200375 CHICKALOON COAL PROJECT Prepared For: Riversdale Alaska LLC A subsidiary of RIVERSDALE RESOURCES PTY LTD Level 2, Chifley Tower 2 Chifley Square Sydney NSW 2000 +61 2 9324 4499 US Cell 907 3016031 [email protected] Prepared By: Michael A. Belowich Alaska Earth Sciences, Inc. 1075 Check Street, Suite 210 Wasilla, Alaska 99654 March 23, 2012 Revised on May 04, 2012 TABLE OF CONTENTS Page Table of Contents i List of Figures , Tables, and Plates ii PART A – GENERAL INFORMATION 1.0 Applicant Information iv 2.0 Location of the Exploration v 3.0 Period of Exploration vi 4.0 Ownership of Surface/Subsurface Mineral Estate vi 5.0 Chickaloon Land Owners vii PART B – EXPLORATION AREA DESCRIPTION 1.0 Location, Access and Physiography 1 2.0 Geology-General 4 3.0 Previous Mine History and Exploration Drilling 8 3.1 Chickaloon, Kings River, and Coal Creek Mines 8 3.2 Castle Mountain Mine 11 4.0 Coal Resources and Quality 13 5.0 Land Use 15 6.0 Climate 18 7.0 Hydrology – General 20 7.1 Surface Water 20 7.2 Ground Water 22 8.0 Soils 26 9.0 Vegetation 29 10.0 Birds and Other Terrestrial Wildlife 31 10.1 Birds 31 10.2 Terrestrial Wildlife 33 11.0 Aquatic Wildlife 34 12.0 Cultural and Historical Resources 36 PART C – EXPLORATION AND RECLAMATION PLAN 1.0 Introduction 39 2.0 2012 Surface Drilling Program 40 3.0 Trenching and Test Pits 47 4.0 Geophysical Exploration Methods 49 5.0 Equipment Types/Uses 50 6.0 Environmental Baseline Data Gathering 52 7.0 Borehole Plugging and Reclamation 54 8.0 Revegetation Procedures 57 9.0 Hydrologic Balance Control Measures 58 10.0 Transportation and Facilities 60 11.0 Reclamation Bond 62 i 12.0 Time Table 66 13.0 References 67 LIST OF FIGURES Figure Page 1.
    [Show full text]
  • An Inventory of Belemnites Documented in Six Us National Parks in Alaska
    Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian.
    [Show full text]
  • Geological Characteristics in Cook Inlet Area, Alaska
    SOCIE?I’YOF PETROLEUMENGINEERSOF AIME 6200 North CentralExpressway *R SPE 1588 Dallas,Texas 752C6 THIS IS A PREPRINT--- SUBJECTTO CORRECTION Geological Characteristics in Cook Inlet Area, Alaska Downloaded from http://onepetro.org/SPEATCE/proceedings-pdf/66FM/All-66FM/SPE-1588-MS/2087697/spe-1588-ms.pdf by guest on 25 September 2021 By ThomasE. Kelly,Jr. MemberAIYE, Mickl T. Halbouty,Houston,Tex. @ Copyright 19G6 Americsn Institute of Mining, Metallurgical and Petroleum Engineers, Inc. This paper was preparedfor the 41st AnnualFall Meetingof the Societyof PetroleumEngineers of AIME, to be held in Dallas,l?ex.,Oct. 2-5, 1966. permissionto copy is restrictedto an abstract of not more than 300 words. Illustrationsmay not be copied. The abstractshouldcontainconspicu- ous acknowledgmentof whereand by whom the paper is presented. Publicationelsewhereafter publica- tion in the JOURNALOF l?i’TROI.WJMTECHNOLOGYor the SOCIETYOF PETROLEUMENGINEERSJOURNALis usually grantedupon requestto the Editorof the appropriatejournalprovideciagreementto give propercredit is made. Discussionof this paper is invited. Three copiesof any discussionshouldbe sent to the Societyof PetroleumEngineersoffice. Such discussionmay be presentedat the abovemeetingand, with the paper,may be consideredfor publicationin one of the two WE magazines. v, The Cook Inlet basin is a narrow, Although the general characteristics elongate trough of Mesozoic and Ter- of the basin are fairly well known, tiary sediments located north of new information, as it is made avail- latitude 59° in south-central Alaska able will cause many revisions of the (Fig. 1). The basin covers approxi- stratigraphic and structural fabric mately 11,000 square miles of th~ before a complete geological picture northerripart of the Matanuska geo- is possible.
    [Show full text]
  • Geologic Map of Alaska
    Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.
    [Show full text]
  • Bedrock Geologic Map of the Northern Alaska Peninsula Area, Southwestern Alaska Compiled by Frederic H
    Bedrock Geologic Map of the Northern Alaska Peninsula Area, Southwestern Alaska Compiled by Frederic H. Wilson, Robert B. Blodgett, Charles D. Blome, Solmaz Mohadjer, Cindi C. Preller, Edward P. Klimasauskas, Bruce M. Gamble, and Warren L. Coonrad Pamphlet to accomopany Scientific Investigations Map 2942 2017 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ...........................................................................................................................................................1 Introduction and Previous Work .................................................................................................................1 Geographic, Geologic, and Physiographic Framework ...........................................................................2 Geologic Discussion ......................................................................................................................................3 Ahklun Mountains Province ................................................................................................................4 Lime Hills Province ...............................................................................................................................4 Alaska-Aleutian Range Province .......................................................................................................4 Map Units Not Assigned to a Province .............................................................................................4 Digital Data......................................................................................................................................................5
    [Show full text]