OPEN Adaptive evolution of the circadian gene SUBJECT AREAS: timeout in insects TRANSCRIPTION Hai-Feng Gu1,2, Jin-Hua Xiao1, Li-Ming Niu3, Bo Wang1, Guang-Chang Ma3, Derek W. Dunn4 MOLECULAR EVOLUTION & Da-Wei Huang1,5 ENTOMOLOGY 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, 2 3 Received China, University of Chinese Academy of Sciences, Beijing, 100039, China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China, 4Statistics and Mathematics College, Yunnan 25 July 2013 5 University of Finance and Economics, Kunming, Yunnan, 650221, China, Plant Protection College, Shandong Agricultural Accepted University, Tai’an, 271018, China. 28 January 2014 Published Most insects harbor two paralogous circadian genes, namely timeout and timeless. However, in the 27 February 2014 Hymenoptera only timeout is present. It remains unclear whether both genes, especially timeout in hymenopteran insects, have distinct evolutionary patterns. In this study, we examine the molecular evolution of both genes in 25 arthropod species, for which whole genome data are available, with addition of the daily expression of the timeout gene in a pollinating fig wasp, Ceratosolen solmsi (Hymenoptera: Correspondence and Chalcidoidea: Agaonidae). Timeless is under stronger purifying selection than timeout, and timeout has requests for materials positively selected sites in insects, especially in the Hymenoptera. Within the Hymenoptera, the function of should be addressed to timeout may be conserved in bees and ants, but still evolving rapidly in some wasps such as the chalcids. In J.-H.X. (
[email protected]. fig wasps, timeout is rhythmically expressed only in females when outside of the fig syconium but arrhythmically in male and female wasps inside the syconium.