Stable Isotopes in Precipitation and Ground Water in the Yucca Mountain

Total Page:16

File Type:pdf, Size:1020Kb

Stable Isotopes in Precipitation and Ground Water in the Yucca Mountain University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 1989 STABLE ISOTOPES IN PRECIPITATION AND GROUND WATER IN THE YUCCA MOUNTAIN REGION, SOUTHERN NEVADA: PALEOCLIMATIC IMPLICATIONS Larry Benson University of Colorado at Boulder, [email protected] Harold Klieforth Desert Research Institute Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Benson, Larry and Klieforth, Harold, "STABLE ISOTOPES IN PRECIPITATION AND GROUND WATER IN THE YUCCA MOUNTAIN REGION, SOUTHERN NEVADA: PALEOCLIMATIC IMPLICATIONS" (1989). USGS Staff -- Published Research. 789. http://digitalcommons.unl.edu/usgsstaffpub/789 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Geophysical Monograph Series Aspects of Climate Variability in the Pacific and the Western Americas Vol. 55 Geophysical Monograph 55 STABLE ISOTOPES IN PRECIPITATION AND GROUND WATER IN THE YUCCA MOUNTAIN REGION, SOUTHERN NEVADA: PALEOCLIMATIC IMPLICATIONS Larry Benson InterdisciplinaryClimate SystemsGroup Room 135, National Center of AtmosphericResearch, Boulder, CO 80307 Harold Klieforth AtmosphericSciences Center Desert Research Institute, Reno, NV 89506 Abstract. Unadjustedages of ground-watersamples indicate that most recordof lake-levelchange in the Lahontanbasin was principallya func- rechargein the Yucca Mountain and AmargosaDesert areasof southern tion of the size and extent of the continental ice sheet. When the ice sheet Nevadamay have occurred between 18,500 and 9000 yearsbefore present. was large (Figure 1), the polar-front jetstream was forced over the Comparisonof thestable-isotope ½180-•5D)concentrations in this water southwesternUnited Statesand provided sufficienteffective moisture,in with stable-isotopeconcentrations in precipitationin the southernNevada terms of increasedprecipitation and cloudiness,for the formationof high- area indicatesthat ground-waterrecharge occurred by infiltrationof cold- standlakes [Bensonand Thompson, 1987a,b; Lao and Benson, 1988]. seasonprecipitation. Infiltration of snowmeltalong the bottom of Fortymile Bensonand Thompson [ 1987b]observed that the maximumextent of Late Canyonseems to be the mostlikely rechargemechanism for YuccaMoun- Wisconsinglacation in the northernpart of the Great Basin precededthe tain groundwater. Ground-water recharge in southernNevada was nearly higheststand of Lake Lahontan[Dorn et al., 1987]. This indicatesincreased synchronouswith the last lake cycle in the Lahontanbasin in northern moistureavailability at a time when glaciersin the upper reachesof water Nevada. This regional-scalechange in the hydrologicbalance occurred shedswere retreating.To explainthis observationBenson and Thompson duringthe transitionfrom maximum-glacialto interglacialconditions and [1987a] hypothesizedthat the seasonalityof precipitationshifted to warmer wasassociated with a changein thelocation of theair-parcel moisture-source regionin the easternPacific Ocean and with a warmingof the climatebe- tween 18,500 and 9000 years before present. In the study area the temperatureof condensationof precipitationthat infiltratedto the watertable a•80planktonic • increasedby about5 øC. The warmingtrend also contributedto the re- foraminifera/• cessionof mountainglaciers in northernNevada. Recent atmospheric global (AtlanticOcean)/ / climatemodel simulations provide an integratingtheory that accountsfor the near synchroneityof ice sheet,lake, and ground-watercycles. In the modelthe positionand persistence of thejetstream, which is associatedwith oll the progressionof maximumeffective precipitation, is substantiallyaffected by the size and shapeof the continentalice sheet. 0 /•---•%%_ Alternate Introduction • • • • '% lakelevels In a recentpaper Benson and Thompson [1987a] suggestedthat the timing foraminifera of the lasthighstand lake in the Lahontanbasin was associatedwith change in the mean positionof the jetstreamduring the Late Wisconsin.Recent (AtlanticOcean) atmosphericglobal climate model (AGCM) results[Kutzbach and Wright, 1985; Manabe and Broccoli, 1985; Kutzbachand Guetter, 1986; Kutzbach, 1987; andRind, 1987] supportthis concept. These studies have shown that between 18,000 and 15,000 years before present(yr B.P.) significant changesoccurred in the glacial age circulation at both the surfaceand jetstreamlevels that primarily were the resultof glacialage lower boundary conditions(ice-sheet size, sea level, sea-iceextent, sea-surface temperature, 0 5 10 15 20 25 30 35 and landalbedo). This widespreadchange indicates the possibilitythat the 103 Year B. P. Fig. 1. Graphcomparing the Lahontanlake-level record and the •5180 This paper is not subjectto U.S. copyright. Publishedin 1989 by recordsfor Atlantic Oceanplanktonic and benthicForaminifera (seetext the American Geophysical Union. for data sources). 41 Geophysical Monograph Series Aspects of Climate Variability in the Pacific and the Western Americas Vol. 55 42 STABLE ISOTOPES SOUTHERN NEVADA 16ø45' 116ø30' monthsor, alternatively, wintersbecame warmer. It is also possiblethat 37ø00' the climatebecame generally warmer, but evaporationover lake basinswas NEVADA reducedby persistentcloud cover. This paperaddresses the question:What typeof climaticchange occurred CarsonCity in the Great Basin between 18,500 and 9000 yr B.P.? It does so by ex- aminingthe Great Basin Late-Wisconsinclimatic and hydrologicchange (lake level, groundwater and glacial cycles)in terms of the isotope(&D and• 80) concentrationsin ground water recharged in theYucca Moun- Approximateboundary tain areaof southernNevada since about 18,500 yr B.P. (Figure 2). Yucca of Yucca Mountain Mountain, which lies about350 km southof the geographiccenter of Lake exploratoryblock Lahontan, is the nearest area where a reasonable amount of data exist on the timing and isotopicchemistry of ground-waterrecharge during the Late Wisconsin.The climaticconditions existing during recharge were inferred usingthe light-isotopicconcentration of present-dayprecipitation known Crater Fiat as a function of four interrelatedvariables (season,air temperature,air- parcel trajectory and altitude). ©VH-1 36ø45' 1350 I I I I I I • I Amargosa • 1300- '-"' • , ', Lake-levelcurve • x forthe western , ahont, / 5m, // • 1200- _•'½/ / I l•0km 1150- -- -6 Fig. 3. Map showinglocation of selectedtest wells in the Yucca Moun- !• Distributionofgroundwater ages forthe Yucca Mountain and z tain area. - sa Desedareas - 5 - -4½ a maximumvalue. In their calculationsWhite andChuma [1987] usedpure water to representthe compositionof rechargewater and allowedcalcium - -3 carbonate(containing 100 percentdead carbon) to dissolveuntil the com- positionof the simulatedground water was the sameas the composition _ _2 • of the actualground water. The quantityof deadcarbon input to the water wasthen used to correct the •4C age of thesample. However, distribution- - -1• of-speciesand saturation-statecalculations using EQ3NR indicate that present-dayfloodwaters (thought to representthe rechargesource for J-12, 0 5 10 15 20 25 30 35 4•¸ J-13 and UE-29a # 2 groundwater [Claassen,1985]) in FortymileWash 10 3 Year B. P. are saturatedwith calciumcarbonate and contain 100 percentmodern car- bon. Input of floodwaterchemical compositions to EQ3NR/EQ6 simula- FiB. 2. Graphcomparin8 the L•ontan lake-levelrecord with the distribu- tionsof the compositionof YuccaMountain ground water, therefore,are tion of unadjusted8round-water abes Jn the •ucca Mountainand Amar8osa expectedto resultin relativelysmall •4C corrections. Desert areas. From August1983 through August 1986, 429 precipitationsamples were collectedat 12 southernNevada stations (Figures 4 and 5). The latitude, longitude,and altitudeof eachstation are listedin Table 2. The sampling Methods intervalof precipitationsamples was halted within 24 hoursafter the cessa- tion of precipitationin order to isolateindividual precipitation events and Ground water from several wells located on or near Yucca Mountain, minimizethe effect of evaporationon the isotopiccontent of the sample. Nevada, (Figure 3) were sampledand analyzedfrom 1971 to 1984 by The dateand approximatetime thatprecipitation began and ended and the membersof the U.S. GeologicalSurvey. Drilling, samplingand analytical volumeand the type of precipitation(rain, snow, or hail) were recorded. proceduresare thosedescribed in Bensonet al. [ 1983]. The isotopiccom- In June1985 CampbellScientific 21X Microloggers(use of brand, firm, positionand unadjustedradiocarbon ages of the water samplesare listed or trade namesin this report is for identificationpurposes only and does in Table la and lb [Bensonand McKinley, 1985]. not constituteendorsement by the U.S. GeologicalSurvey) were installed Age adjustmentof threeground-water samples (J-12, J-13, UE29-a #2) at sevenprecipitation collection stations (Figure 5). Eachmicrologger was have been attemptedpreviously [White and Chuma, 1987] using the connectedto a temperatureprobe and to a tipping-bucketrain gage. The EQ3NR/EQ6software package [Wolery 1979, 1985]. Corrected •4C ages microloggerrecorded Julian date, time, temperature,and rain-gage bucket of eachof the ground-watersamples were about2000 yearsless than unad- tips at 15-minuteintervals. Prior to the installationof microloggers,data
Recommended publications
  • Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
    5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River.
    [Show full text]
  • Ground-Magnetic Studies of the Amargosa Desert Region, California and Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY GROUND-MAGNETIC STUDIES OF THE AMARGOSA DESERT REGION, CALIFORNIA AND NEVADA Richard J. Blakely, John W. Hillhouse, and Robert L. Morin U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 Open-File Report 2005-1132 2005 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. GROUND-MAGNETIC STUDIES OF THE AMARGOSA DESERT REGION, CALIFORNIA AND NEVADA Richard J. Blakely, John W. Hillhouse, and Robert L. Morin ABSTRACT High-resolution aeromagnetic surveys of the Amargosa Desert region, California and Nevada, exhibit a diverse array of magnetic anomalies reflecting a wide range of mid- and upper-crustal lithologies. In most cases, these anomalies can be interpreted in terms of exposed rocks and sedimentary deposits. More difficult to explain are linear magnetic anomalies situated over lithologies that typically have very low magnetizations. Aeromagnetic anomalies are observed, for example, over thick sections of Quaternary alluvial deposits and spring deposits associated with past or modern ground-water discharge in Ash Meadows, Pahrump Valley, and Furnace Creek Wash. Such deposits are typically considered nonmagnetic. To help determine the source of these aeromagnetic anomalies, we conducted ground-magnetic studies at five areas: near Death Valley Junction, at Point of Rocks Spring, at Devils Hole, at Fairbanks Spring, and near Travertine Springs. Depth-to-source calculations show that the sources of these anomalies lie within the Tertiary and Quaternary sedimentary section.
    [Show full text]
  • Plate 1 117° 116°
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2015–5175 U.S. Geological Survey U.S. Department of Energy Plate 1 117° 116° Monitor Range White River Valley Hot Creek Valley 5,577 (1,700) Warm Springs Railroad Valley 6 5,000 4,593 (1,400) Stone Cabin Valley Quinn Canyon Range Tonopah 5,577 (1,700) Ralston Valley NYE COUNTY 4,921 (1,500) LINCOLN COUNTY Big Smoky Valley 5,249 (1,600) 38° 38° 5,906 (1,800) 5,249 (1,600) Ralston Valley Coal Valley 5,249 (1,600) Kawich Range 4,265 (1,300) 4,921 (1,500) 5,249 (1,600) 6,234 (1,900) 5,577 (1,700) 4,921 (1,500) Railroad Valley South CACTUS FLAT 5,200 | 200 Cactus Range Penoyer Valley Goldfield 5,249 (1,600) 3,800 | 3,800 4,921 (1,500) Clayton Valley 3,609 (1,100) Rachel Sand Spring Valley 5,249 (1,600) 5,577 (1,700) Sarcobatus Flat North Kawich Valley 4,593 (1,400) 5,600 | 5,600 93 Pahranagat Valley 4,921 4,593 (1,400) 4,593 (1,400)5,249 3,937 (1,200)4,265 (1,300) Gold Flat Pahranagat Range 4,921 (1,500) Pahute Mesa–Oasis Valley 6,300 | 5,900 Belted Range Alamo 4,265 (1,300) 4,593 (1,400) 3,609 (1,100) Scottys Emigrant Valley Junction Black Pahute Mesa Nevada National Mountain Security Site 3,281 (1,000) NYE COUNTY Sarcobatus Flat ESMERALDA COUNTY ESMERALDA Rainier Mesa 3,937 (1,200) Yucca Flat Timber Death Valley North Mountain 4,000 | 4,000 Yucca Flat Sarcobatus Flat South Oasis Valley subbasin Grapevine 37° 37° Springs area 1,900 | 1,900 4,265 Grapevine Mountains Bullfrog Hills 2,297 (700) 100 | 100 3,937 (1,200) Ash Meadows 20,50020,500 |
    [Show full text]
  • NUREG-1710 Vol 1 History of Water
    NUREG-1710 Vol. 1 History of Water Development in the Amargosa Desert Area: A Literature Review i I I I I I I I U.S. Nuclear Regulatory Commission Advisory Committee on Nuclear Waste Washington, DC 20555-0001 AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS 7 NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC's Public Electronic Reading Room at books, journal articles, and transactions, Federal http://www.nrc.pov/reading-rm.html. Register notices, Federal and State legislation, and Publicly released records include, to name a few, congressional reports. Such documents as theses, NUREG-series publications; Federal Register notices; dissertations, foreign reports and translations, and applicant, licensee, and vendor documents and non-NRC conference proceedings may be purchased correspondence; NRC correspondence and internal from their sponsoring organization. memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are NRC publications in the NUREG series, NRC maintained at- regulations, and Title 10, Energy, in the Code of The NRC Technical Library Federal Regulations may also be purchased from one Two White Flint North of these two sources. 11545 Rockville Pike 1. The Superintendent of Documents Rockville, MD 20852-2738 U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402-0001 These standards are available in the library for Intemet: bookstore.gpo.gov reference use by the public.
    [Show full text]
  • Hydrologic Basin Death Valley California
    Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic
    [Show full text]
  • Global Patterns and Environmental Controls of Perchlorate and Nitrate Co-Occurrence in Arid and Semi-Arid Environments W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2015 Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments W. Andrew Jackson Texas Tech University, [email protected] J. K. Böhlke U.S. Geological Survey, 431 National Center, Reston, VA Brian J. Andraski U.S. Geological Survey, 2730 N. Deer Run Rd, Carson City, NV Lynne Fahlquist U.S. Geological Survey, 1505 Ferguson Ln, Austin, TX Laura Bexfield U.S. Geological Survey, 5338 Montgomery Blvd. NE, Suite 400, Albuquerque, NM See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; and Harvey, Gregory J., "Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments" (2015). NASA Publications. 210. http://digitalcommons.unl.edu/nasapub/210 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors W. Andrew Jackson, J.
    [Show full text]
  • Early Pliocene (Pre–Ice Age) El Niño–Like Global Climate: Which El Niño?
    Early Pliocene (pre–Ice Age) El Niño–like global climate: Which El Niño? Peter Molnar* Department of Geological Sciences and Cooperative Institute for Research in Environmental Science (CIRES), University of Colo- rado, Boulder, Colorado 80309-0399, USA Mark A. Cane Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964-8000, USA ABSTRACT warmest region extending into the eastern- in part from theoretical predictions for how the most Pacifi c Ocean, not near the dateline as structure of the upper ocean and its circulation Paleoceanographic data from sites near occurs in most El Niño events. This inference have changed over late Cenozoic time (e.g., the equator in the eastern and western Pacifi c is consistent with equatorial Pacifi c proxy Cane and Molnar, 2001; Philander and Fedorov, Ocean show that sea-surface temperatures, data indicating that at most a small east-west 2003). Not surprisingly, controversies continue and apparently also the depth and tempera- gradient in sea-surface temperature seems to to surround hypothesized stimuli for switches ture distribution in the thermocline, have have existed along the equator in late Mio- both from permanent El Niño to the present-day changed markedly over the past ~4 m.y., from cene to early Pliocene time. Accordingly, such ENSO state and from ice-free Laurentide and those resembling an El Niño state before ice a difference in sea-surface temperatures may Fenno-Scandinavian regions to the alternation sheets formed in the Northern Hemisphere account for the large global differences in cli- between glacial and interglacial periods that has to the present-day marked contrast between mate that characterized the earth before ice occurred since ca.
    [Show full text]
  • Distribution of Amargosa River Pupfish (Cyprinodon Nevadensis Amargosae) in Death Valley National Park, CA
    California Fish and Game 103(3): 91-95; 2017 Distribution of Amargosa River pupfish (Cyprinodon nevadensis amargosae) in Death Valley National Park, CA KRISTEN G. HUMPHREY, JAMIE B. LEAVITT, WESLEY J. GOLDSMITH, BRIAN R. KESNER, AND PAUL C. MARSH* Native Fish Lab at Marsh & Associates, LLC, 5016 South Ash Avenue, Suite 108, Tempe, AZ 85282, USA (KGH, JBL, WJG, BRK, PCM). *correspondent: [email protected] Key words: Amargosa River pupfish, Death Valley National Park, distribution, endangered species, monitoring, intermittent streams, range ________________________________________________________________________ Amargosa River pupfish (Cyprinodon nevadensis amargosae), is one of six rec- ognized subspecies of Amargosa pupfish (Miller 1948) and survives in waters embedded in a uniquely harsh environment, the arid and hot Mojave Desert (Jaeger 1957). All are endemic to the Amargosa River basin of southern California and Nevada (Moyle 2002). Differing from other spring-dwelling subspecies of Amargosa pupfish (Cyprinodon ne- vadensis), Amargosa River pupfish is riverine and the most widely distributed, the extent of which has been underrepresented prior to this study (Moyle et al. 2015). Originating on Pahute Mesa, Nye County, Nevada, the Amargosa River flows intermittently, often under- ground, south past the towns of Beatty, Shoshone, and Tecopa and through the Amargosa River Canyon before turning north into Death Valley National Park and terminating at Badwater Basin (Figure 1). Amargosa River pupfish is data deficient with a distribution range that is largely unknown. The species has been documented in Tecopa Bore near Tecopa, Inyo County, CA (Naiman 1976) and in the Amargosa River Canyon, Inyo and San Bernardino Counties, CA (Williams-Deacon et al.
    [Show full text]
  • NYE COUNTY AGENDA INFORMATION FORM M~Ction P Presentation Presentation & Action II -Ihpartment: Public Works Sategory: Timed Agenda Item - 9:30 A.M
    NYE COUNTY AGENDA INFORMATION FORM m~ction P Presentation Presentation & Action II -Ihpartment: Public Works Sategory: Timed Agenda Item - 9:30 a.m. May 21,2007 G Continued from meeting of: Sontact: Samson Yao, Director I Phone: 775-751-6844 1 I I Return to: F:- - 15 kti0n requested: (Include what, with whom, when, where, why, how much ($) and terms) I"ublic Hearing on results of Public Works identification and determination of improved roads and f streets maintained by Nye County for the purposes of compliance with Nevada Revised Statutes Zhapter 365.550 with respect to Proceeds of Tax Levied pursuant to NRS 365.180; and other 1natters properly related thereto. - IComplete description of requested action: (Include, if applicable, background, impact, long-term commitment, existing munty policy, future goals, obtained by competitive bid, accountability measures) Tabulation of centerline miles of maintained roads in Nye County attached. Any information provided after the agenda is published or during the meeting of the Commissioners will require you to provide 20 copies: one for each Commissioner, one for the Clerk, one for the District Attorney, one for the Public and two for -the County Manager. Contracts or documents requiring signature must be submitted with three original copies. Expenditure Impact by FY(s): (Provide detail on Financial Form) CI No financial impact Routing & Approval (Sign & Date) 1. Dept Date 6. Date 2. Date 7. HR ate I I I 3. Date 1 8. Legal Date Board of Countvw Commissioners Action R Approved 0 Disapproved ] O
    [Show full text]
  • Geographic Names
    GEOGRAPHIC NAMES CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES ? REVISED TO JANUARY, 1911 WASHINGTON GOVERNMENT PRINTING OFFICE 1911 PREPARED FOR USE IN THE GOVERNMENT PRINTING OFFICE BY THE UNITED STATES GEOGRAPHIC BOARD WASHINGTON, D. C, JANUARY, 1911 ) CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES. The following list of geographic names includes all decisions on spelling rendered by the United States Geographic Board to and including December 7, 1910. Adopted forms are shown by bold-face type, rejected forms by italic, and revisions of previous decisions by an asterisk (*). Aalplaus ; see Alplaus. Acoma; township, McLeod County, Minn. Abagadasset; point, Kennebec River, Saga- (Not Aconia.) dahoc County, Me. (Not Abagadusset. AQores ; see Azores. Abatan; river, southwest part of Bohol, Acquasco; see Aquaseo. discharging into Maribojoc Bay. (Not Acquia; see Aquia. Abalan nor Abalon.) Acworth; railroad station and town, Cobb Aberjona; river, IVIiddlesex County, Mass. County, Ga. (Not Ackworth.) (Not Abbajona.) Adam; island, Chesapeake Bay, Dorchester Abino; point, in Canada, near east end of County, Md. (Not Adam's nor Adams.) Lake Erie. (Not Abineau nor Albino.) Adams; creek, Chatham County, Ga. (Not Aboite; railroad station, Allen County, Adams's.) Ind. (Not Aboit.) Adams; township. Warren County, Ind. AJjoo-shehr ; see Bushire. (Not J. Q. Adams.) Abookeer; AhouJcir; see Abukir. Adam's Creek; see Cunningham. Ahou Hamad; see Abu Hamed. Adams Fall; ledge in New Haven Harbor, Fall.) Abram ; creek in Grant and Mineral Coun- Conn. (Not Adam's ties, W. Va. (Not Abraham.) Adel; see Somali. Abram; see Shimmo. Adelina; town, Calvert County, Md. (Not Abruad ; see Riad. Adalina.) Absaroka; range of mountains in and near Aderhold; ferry over Chattahoochee River, Yellowstone National Park.
    [Show full text]
  • A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars
    minerals Review A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars Joanna Clark 1,* , Brad Sutter 2, P. Douglas Archer Jr. 2, Douglas Ming 3, Elizabeth Rampe 3, Amy McAdam 4, Rafael Navarro-González 5,† , Jennifer Eigenbrode 4 , Daniel Glavin 4 , Maria-Paz Zorzano 6,7 , Javier Martin-Torres 7,8, Richard Morris 3, Valerie Tu 2, S. J. Ralston 2 and Paul Mahaffy 4 1 GeoControls Systems Inc—Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA 2 Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (B.S.); [email protected] (P.D.A.J.); [email protected] (V.T.); [email protected] (S.J.R.) 3 NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (D.M.); [email protected] (E.R.); [email protected] (R.M.) 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.M.); [email protected] (J.E.); [email protected] (D.G.); [email protected] (P.M.) 5 Institito de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; [email protected] 6 Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, 28850 Madrid, Spain; [email protected] 7 Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK; [email protected] 8 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain Citation: Clark, J.; Sutter, B.; Archer, * Correspondence: [email protected] P.D., Jr.; Ming, D.; Rampe, E.; † Deceased 28 January 2021.
    [Show full text]
  • Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone
    Tribally Approved American Indian Ethnographic Analysis of the Proposed Amargosa Valley Solar Energy Zone Ethnography and Ethnographic Synthesis For Solar Programmatic Environmental Impact Statement and Solar Energy Study Areas in Portions of Arizona, California, Nevada, and Utah Participating Tribes Pahrump Paiute Tribe, Pahrump, Nevada Timbisha Shoshone Tribe, Death Valley, California By Richard W. Stoffle Kathleen A. Van Vlack Hannah Z. Johnson Phillip T. Dukes Stephanie C. De Sola Kristen L. Simmons Bureau of Applied Research in Anthropology School of Anthropology University of Arizona October 2011 Solar PEIS Ethnographic Assessment Page 1 AMARGOSA VALLEY The proposed Amargosa Valley solar energy zone (SEZ) is located about 14 miles south of Beatty, Nevada. The center of the purposed SEZ is located 16 miles northwest of the town of Amargosa Valley, Nevada. The proposed SEZ includes a large section of land west and south of Highway 95, with a portion located on the east side of the highway that incorporates part of Steve‘s Pass (see Figure 1). Figure 1 Google Earth Image of the Amargosa Valley SEZ American Indian Study Area (SEZ Outlined in Red) The Amargosa Valley SEZ American Indian study area extends beyond the proposed boundaries of the SEZ and includes the cultural resources in the surrounding landscape. The Amargosa Valley SEZ American Indian study area includes plant communities, geological features, water sources, and trail systems located in and around the proposed SEZ boundary. The trail systems pass through the SEZ American Indian study area and were used by people from neighboring or distance communities to reach nearby medicinal and ceremonial areas.
    [Show full text]