Mouse Aktip Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Aktip Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Aktip Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Aktip conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Aktip gene (NCBI Reference Sequence: NM_001302267 ; Ensembl: ENSMUSG00000031667 ) is located on Mouse chromosome 8. 11 exons are identified, with the ATG start codon in exon 3 and the TAA stop codon in exon 11 (Transcript: ENSMUST00000120213). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Aktip gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-149I24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a hypomorphic allele exhibit impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. Exon 4 starts from about 4.91% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 1235 bp, and the size of intron 4 for 3'-loxP site insertion: 2670 bp. The size of effective cKO region: ~706 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 11 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Aktip Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7206bp) | A(25.08% 1807) | C(20.9% 1506) | T(30.16% 2173) | G(23.87% 1720) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 - 91130056 91133055 3000 browser details YourSeq 242 685 1312 3000 89.1% chr10 - 61966496 61966777 282 browser details YourSeq 241 685 1312 3000 90.6% chr4 - 119532662 119533220 559 browser details YourSeq 240 688 1312 3000 89.6% chr8 - 4185238 4185515 278 browser details YourSeq 236 692 1312 3000 89.6% chr11 - 103757117 103757504 388 browser details YourSeq 235 681 1311 3000 87.7% chr15 - 102125693 102125993 301 browser details YourSeq 235 680 1312 3000 87.4% chr6 + 113575459 113575791 333 browser details YourSeq 235 685 1312 3000 97.2% chr17 + 74540350 74541003 654 browser details YourSeq 233 687 1312 3000 88.5% chr12 - 55773296 55773605 310 browser details YourSeq 214 689 1096 3000 95.8% chr2 - 34723329 34723968 640 browser details YourSeq 209 692 1096 3000 96.1% chr10 - 128171434 128171896 463 browser details YourSeq 208 685 1269 3000 90.6% chr2 - 119206169 119206658 490 browser details YourSeq 206 681 1096 3000 96.0% chr7 - 97828057 97828654 598 browser details YourSeq 204 683 1310 3000 86.7% chr4 + 116828859 116829365 507 browser details YourSeq 201 693 1096 3000 90.3% chr5 - 122929356 122929730 375 browser details YourSeq 200 681 1096 3000 94.3% chr7 - 144869945 144870528 584 browser details YourSeq 197 694 1096 3000 98.1% chr8 - 107033608 107034019 412 browser details YourSeq 197 681 879 3000 99.5% chr1 - 21334984 21335182 199 browser details YourSeq 196 681 879 3000 99.5% chr15 - 35090900 35091099 200 browser details YourSeq 195 680 879 3000 99.0% chr6 - 85359292 85359493 202 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 - 91126350 91129349 3000 browser details YourSeq 104 1186 1394 3000 90.8% chr2 - 157415501 157415986 486 browser details YourSeq 96 1202 1405 3000 84.7% chr4 - 129510035 129510266 232 browser details YourSeq 96 1153 1399 3000 90.2% chr16 - 35203120 35203671 552 browser details YourSeq 94 1291 1424 3000 90.6% chr12 + 76811472 76834508 23037 browser details YourSeq 91 1270 1398 3000 89.8% chr5 - 115802253 115802416 164 browser details YourSeq 89 1285 1405 3000 87.7% chr3 - 147583186 147583336 151 browser details YourSeq 88 1086 1400 3000 91.7% chr6 + 41280256 41280665 410 browser details YourSeq 87 1071 1400 3000 93.2% chr8 - 67631000 67631355 356 browser details YourSeq 87 1291 1405 3000 88.7% chr7 - 110248254 110248398 145 browser details YourSeq 87 197 1329 3000 91.5% chr9 + 64419302 64719479 300178 browser details YourSeq 86 1071 1326 3000 89.9% chr17 + 44711469 44756823 45355 browser details YourSeq 85 1291 1399 3000 89.9% chr15 - 96988085 96988223 139 browser details YourSeq 85 866 1400 3000 75.0% chr8 + 119418670 119418815 146 browser details YourSeq 85 1291 1399 3000 89.9% chr12 + 45273777 45273914 138 browser details YourSeq 84 1071 1402 3000 85.5% chr17 - 74928550 74928958 409 browser details YourSeq 84 1291 1404 3000 88.3% chr14 - 112495164 112495304 141 browser details YourSeq 83 1291 1399 3000 88.9% chr2 - 127185734 127185871 138 browser details YourSeq 82 1291 1397 3000 89.6% chr6 - 87970676 87970813 138 browser details YourSeq 82 1290 1398 3000 91.8% chr1 - 166091812 166091922 111 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Aktip thymoma viral proto-oncogene 1 interacting protein [ Mus musculus (house mouse) ] Gene ID: 14339, updated on 24-Oct-2019 Gene summary Official Symbol Aktip provided by MGI Official Full Name thymoma viral proto-oncogene 1 interacting protein provided by MGI Primary source MGI:MGI:3693832 See related Ensembl:ENSMUSG00000031667 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Ft; Fif; Ft1; Fts; AL023020 Expression Ubiquitous expression in cerebellum adult (RPKM 8.7), bladder adult (RPKM 7.7) and 28 other tissues See more Orthologs human all Genomic context Location: 8 C4; 8 44.25 cM See Aktip in Genome Data Viewer Exon count: 16 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 8 NC_000074.6 (91111781..91135494, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 8 NC_000074.5 (93647398..93659395, complement) Chromosome 8 - NC_000074.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 13 transcripts Gene: Aktip ENSMUSG00000031667 Description thymoma viral proto-oncogene 1 interacting protein [Source:MGI Symbol;Acc:MGI:3693832] Gene Synonyms Ft1 Location Chromosome 8: 91,111,784-91,199,976 reverse strand. GRCm38:CM001001.2 About this gene This gene has 13 transcripts (splice variants), 211 orthologues, 25 paralogues, is a member of 1 Ensembl protein family and is associated with 16 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Aktip- ENSMUST00000120213.8 2200 292aa ENSMUSP00000112375.1 Protein coding CCDS22519 Q64362 TSL:1 202 GENCODE basic APPRIS P1 Aktip- ENSMUST00000120349.7 2153 292aa ENSMUSP00000113769.1 Protein coding CCDS22519 Q64362 TSL:1 203 GENCODE basic APPRIS P1 Aktip- ENSMUST00000125257.2 2079 292aa ENSMUSP00000119277.2 Protein coding CCDS22519 D3Z2J4 TSL:1 205 Q64362 GENCODE basic APPRIS P1 Aktip- ENSMUST00000120426.8 1687 258aa ENSMUSP00000113379.2 Protein coding CCDS85582 D3Z632 TSL:1 204 GENCODE basic Aktip- ENSMUST00000109609.8 1171 292aa ENSMUSP00000105238.2 Protein coding CCDS22519 Q64362 TSL:1 201 GENCODE basic APPRIS P1 Aktip- ENSMUST00000209444.1 474 55aa ENSMUSP00000148050.1 Protein coding - A0A1B0GSS3 CDS 3' 208 incomplete TSL:3 Aktip- ENSMUST00000209311.1 391 51aa ENSMUSP00000147841.1 Protein coding - A0A1B0GS90 CDS 3' 207 incomplete TSL:2 Aktip- ENSMUST00000211050.1 738 32aa ENSMUSP00000147768.1 Nonsense mediated - A0A1B0GS26 CDS 5' 211 decay incomplete TSL:3 Aktip- ENSMUST00000211042.1 3533 No - Retained intron - - TSL:NA 210 protein Aktip- ENSMUST00000210426.1 811 No - lncRNA - - TSL:5 209 protein Aktip- ENSMUST00000211576.1 450 No - lncRNA - - TSL:3 212 protein Aktip- ENSMUST00000211618.1 409 No - lncRNA - - TSL:2 213 protein Aktip- ENSMUST00000153201.2 139 No - lncRNA - - TSL:1 206 protein Page 6 of 8 https://www.alphaknockout.com 108.19 kb Forward strand 91.12Mb 91.14Mb 91.16Mb 91.18Mb 91.20Mb Genes Rbl2-201 >protein coding Gm45665-201 >processed pseudogene (Comprehensive set... Rbl2-210 >protein coding Gm8489-201 >processed pseudogene Rbl2-208 >protein coding Gm45666-201 >lncRNA Rbl2-205 >retained
Recommended publications
  • Genetic Mutation Analysis of High and Low Igy Chickens by Capture Sequencing
    animals Article Genetic Mutation Analysis of High and Low IgY Chickens by Capture Sequencing 1,2, 1,2, 1,3 1,2 1,2 1,2 Qiao Wang y , Fei Wang y, Lu Liu , Qinghe Li , Ranran Liu , Maiqing Zheng , Huanxian Cui 1,2, Jie Wen 1,2 and Guiping Zhao 1,2,4,* 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (Q.W.); [email protected] (F.W.); [email protected] (L.L.); [email protected] (Q.L.); [email protected] (R.L.); [email protected] (M.Z.); [email protected] (H.C.); [email protected] (J.W.) 2 State Key Laboratory of Animal Nutrition, Beijing 100193, China 3 College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China 4 School of Life Science and Engineering, Foshan University, Foshan 528225, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 6 March 2019; Accepted: 20 May 2019; Published: 23 May 2019 Simple Summary: Immunoglobulin Y (IgY) is the major antibody produced by hens and it endows their offspring with effective humoral immunity against the pathogens. In previous research, we identified 13 genomic regions that were significantly associated with the serum IgY level or antibody responses to sheep red-blood-cells, but the specific mutations in these regions have not been reported. Therefore, we screened for variations in these regions in White Leghorn and Beijing-You chickens with high and low IgY. Our study identified 35,154 mutations and 829 Indels which were associated with IgY levels in both lines.
    [Show full text]
  • Loss-Of-Function Mutation in the Dioxygenase-Encoding FTO Gene
    Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations Sarah Boissel, Orit Reish, Karine Proulx, Hiroko Kawagoe-Takaki, Barbara Sedgwick, Giles Yeo, David Meyre, Christelle Golzio, Florence Molinari, Noman Kadhom, et al. To cite this version: Sarah Boissel, Orit Reish, Karine Proulx, Hiroko Kawagoe-Takaki, Barbara Sedgwick, et al.. Loss-of- Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations. American Journal of Human Genetics, Elsevier (Cell Press), 2009, 85 (1), pp.106-111. 10.1016/j.ajhg.2009.06.002. hal-02044723 HAL Id: hal-02044723 https://hal.archives-ouvertes.fr/hal-02044723 Submitted on 21 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REPORT Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations Sarah Boissel,1,7 Orit Reish,2,7 Karine Proulx,3,7 Hiroko Kawagoe-Takaki,4 Barbara Sedgwick,4 Giles S.H. Yeo,3 David Meyre,5 Christelle Golzio,1 Florence Molinari,1 Noman Kadhom,1 Heather C. Etchevers,1 Vladimir Saudek,3 I. Sadaf Farooqi,3 Philippe Froguel,5,6 Tomas Lindahl,4 Stephen O’Rahilly,3 Arnold Munnich,1 and Laurence Colleaux1,* FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family.
    [Show full text]
  • Transcriptome Sequencing and Genome-Wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder
    Molecular Psychiatry (2015) 20, 563–572 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder Z Zhao1,6,JXu2,6, J Chen3,6, S Kim4, M Reimers3, S-A Bacanu3,HYu1, C Liu5, J Sun1, Q Wang1, P Jia1,FXu2, Y Zhang2, KS Kendler3, Z Peng2 and X Chen3 Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ⩽ 0.01, 53 genes; q ⩽ 0.05, 213 genes; q ⩽ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (Po10 − 7) and BPD (P = 0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways.
    [Show full text]
  • Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data
    Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data Hai-Son Phuoc Le May 2013 CMU-ML-13-101 Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data Hai-Son Phuoc Le May 2013 CMU-ML-13-101 Machine Learning Department School of Computer Science Carnegie Mellon University Thesis Committee Ziv Bar-Joseph, Chair Christopher Langmead Roni Rosenfeld Quaid Morris Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy. Copyright @ 2013 Hai-Son Le This research was sponsored by the National Institutes of Health under grant numbers 5U01HL108642 and 1R01GM085022, the National Science Foundation under grant num- bers DBI0448453 and DBI0965316, and the Pittsburgh Life Sciences Greenhouse. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Keywords: genomics, gene expression, gene regulation, microarray, RNA-Seq, transcriptomics, error correction, comparative genomics, regulatory networks, cross-species, expression database, Gene Expression Omnibus, GEO, orthologs, microRNA, target prediction, Dirichlet Process, Indian Buffet Process, hidden Markov model, immune response, cancer. To Mom and Dad. i Abstract Advances in genomics allow researchers to measure the complete set of transcripts in cells. These transcripts include messenger RNAs (which encode for proteins) and microRNAs, short RNAs that play an important regulatory role in cellular networks. While this data is a great resource for reconstructing the activity of networks in cells, it also presents several computational challenges. These challenges include the data collection stage which often results in incomplete and noisy measurement, developing methods to integrate several experiments within and across species, and designing methods that can use this data to map the interactions and networks that are activated in specific conditions.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • FTS (AKTIP) (NM 022476) Human Untagged Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC112492 FTS (AKTIP) (NM_022476) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: FTS (AKTIP) (NM_022476) Human Untagged Clone Tag: Tag Free Symbol: AKTIP Synonyms: FT1; FTS Vector: pCMV6-XL5 E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: None Fully Sequenced ORF: >NCBI ORF sequence for NM_022476, the custom clone sequence may differ by one or more nucleotides ATGAACCCTTTCTGGAGCATGTCTACAAGCTCTGTACGCAAACGATCTGAAGGTGAAGAGAAGACATTAA CAGGGGACGTGAAAACCAGTCCTCCACGAACTGCACCAAAGAAACAGCTGCCTTCTATTCCCAAAAATGC TTTGCCCATAACTAAGCCTACATCTCCTGCCCCAGCAGCACAGTCAACAAATGGCACGCATGCGTCCTAT GGACCCTTCTACCTGGAATACTCTCTTCTTGCAGAATTTACCTTGGTTGTGAAGCAGAAGCTACCAGGCG TCTATGTGCAGCCATCTTATCGCTCTGCATTAATGTGGTTTGGAGTAATATTCATACGGCATGGACTTTA CCAAGATGGCGTATTTAAGTTTACAGTTTACATCCCTGATAACTATCCAGATGGTGACTGTCCACGCTTG GTGTTCGATATTCCTGTCTTTCACCCGCTAGTTGATCCCACCTCAGGTGAGCTGGATGTGAAGAGAGCAT TTGCAAAATGGAGGCGGAACCATAATCATATTTGGCAGGTATTAATGTATGCAAGGAGAGTTTTCTACAA GATTGATACAGCAAGCCCCCTGAACCCAGAGGCTGCAGTACTGTATGAAAAAGATATTCAGCTTTTTAAA AGTAAAGTTGTTGACAGTGTTAAGGTGTGCACTGCTCGTTTGTTTGACCAACCTAAAATAGAAGACCCCT ATGCAATTAGCTTTTCTCCATGGAATCCTTCTGTACATGATGAAGCCAGAGAAAAGATGCTGACTCAGAA AAAGCCTGAAGAACAGCACAATAAAAGTGTTCATGTTGCTGGCCTGTCATGGGTAAAGCCTGGCTCAGTA CAGCCTTTCAGTAAAGAAGAGAAAACAGTGGCGACTTAA This product is to be used for laboratory only. Not for
    [Show full text]
  • Lack of Association Between Genetic Polymorphism of FTO
    J Pediatr (Rio J). 2016;92(5):521---527 www.jped.com.br ORIGINAL ARTICLE Lack of association between genetic polymorphism of FTO, AKT1 and AKTIP in childhood overweight ଝ and obesity a,1 a,∗,1 Patrícia de Araújo Pereira , António Marcos Alvim-Soares Jr. , d c Valéria Cristina Sandrim , Carla Márcia Moreira Lanna , b b Débora Cristine Souza-Costa , Vanessa de Almeida Belo , a b Jonas Jardim de Paula , José Eduardo Tanus-Santos , a a Marco Aurélio Romano-Silva , Débora Marques de Miranda a Universidade Federal de Minas Gerais (UFMG), INCT de Medicina Molecular, Belo Horizonte, MG, Brazil b Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Farmacologia, Ribeirão Preto, SP, Brazil c Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Fisiologia, Juiz de Fora, MG, Brazil d Universidade Estadual Paulista (UNESP), São Paulo, SP, Brazil Received 15 July 2015; accepted 15 December 2015 Available online 21 June 2016 KEYWORDS Abstract Single-nucleotide Objective: Obesity is a chronic disease caused by both environmental and genetic factors. polymorphisms; Epidemiological studies have documented that increased energy intake and sedentary lifestyle, as well as a genetic contribution, are forces behind the obesity epidemic. Knowledge about the Childhood obesity; interaction between genetic and environmental components can facilitate the choice of the Fat mass and obesity associated; most effective and specific measures for the prevention of obesity. The aim of this study was Gene; to assess the association between the FTO, AKT1, and AKTIP genes and childhood obesity and AKT1; insulin resistance. AKTIP Methods: This was a case---control study in which SNPs in the FTO (rs99396096), AKT1, and AKTIP genes were genotyped in groups of controls and obese/overweight children.
    [Show full text]
  • Lack of Association Between Genetic Polymorphism Of
    +Model ARTICLE IN PRESS J Pediatr (Rio J). 2016;xxx(xx):xxx---xxx www.jped.com.br ORIGINAL ARTICLE Lack of association between genetic polymorphism of FTO, AKT1 and AKTIP in childhood overweight and obesityଝ a,1 a,∗,1 Patrícia de Araújo Pereira , António Marcos Alvim-Soares Jr. , d c Valéria Cristina Sandrim , Carla Márcia Moreira Lanna , b b Débora Cristine Souza-Costa , Vanessa de Almeida Belo , a b Jonas Jardim de Paula , José Eduardo Tanus-Santos , a a Marco Aurélio Romano-Silva , Débora Marques de Miranda a INCT de Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil b Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil c Department of Physiology, Institute of Biologic Science, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil d Universidade Estadual Paulista (UNESP), São Paulo, SP, Brazil Received 15 July 2015; accepted 15 December 2015 KEYWORDS Abstract Single-nucleotide Objective: Obesity is a chronic disease caused by both environmental and genetic factors. polymorphisms; Epidemiological studies have documented that increased energy intake and sedentary lifestyle, as well as a genetic contribution, are forces behind the obesity epidemic. Knowledge about the Childhood obesity; interaction between genetic and environmental components can facilitate the choice of the Fat mass and obesity associated; most effective and specific measures for the prevention of obesity. The aim of this study was Gene; to assess the association between the FTO, AKT1, and AKTIP genes and childhood obesity and AKT1; insulin resistance. AKTIP Methods: This was a case---control study in which SNPs in the FTO (rs99396096), AKT1, and AKTIP genes were genotyped in groups of controls and obese/overweight children.
    [Show full text]
  • Interaction of TLK1 and AKTIP As a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression
    Article Interaction of TLK1 and AKTIP as a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression Md Imtiaz Khalil 1,† , Christopher Madere 1,†, Ishita Ghosh 1, Rosalyn M. Adam 2 and Arrigo De Benedetti 1,* 1 LSU Health Sciences Center, Department of Biochemistry and Molecular Biology, Shreveport, LA 71103, USA; [email protected] (M.I.K.); [email protected] (C.M.); [email protected] (I.G.) 2 Department of Urology, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-318-675-5668 † These authors contributed equally. Abstract: Prostate cancer (PCa) progression is characterized by the emergence of resistance to andro- gen deprivation therapy (ADT). AKT/PKB has been directly implicated in PCa progression, often due to the loss of PTEN and activation of PI3K>PDK1>AKT signaling. However, the regulatory network of AKT remains incompletely defined. Here, we describe the functional significance of AKTIP in PCa cell growth. AKTIP, identified in an interactome analysis as a substrate of TLK1B (that itself is ele- vated following ADT), enhances the association of AKT with PDK1 and its phosphorylation at T308 and S473. The interaction between TLK1 and AKTIP led to AKTIP phosphorylation at T22 and S237. The inactivation of TLK1 led to reduced AKT phosphorylation, which was potentiated with AKTIP knockdown. The TLK1 inhibitor J54 inhibited the growth of the LNCaP cells attributed to reduced AKT activation. However, LNCaP cells that expressed constitutively active, membrane-enriched Citation: Khalil, M.I.; Madere, C.; Myr-AKT (which is expected to be active, even in the absence of AKTIP) were also growth-inhibited Ghosh, I.; Adam, R.M.; De Benedetti, A.
    [Show full text]
  • Systematic Review of Suicide Prevention in Veterans
    Department of Veterans Affairs Health Services Research & Development Service Evidence-based Synthesis Program Systematic Review of Suicide Prevention in Veterans November 2015 Prepared for: Investigators: Department of Veterans Affairs Principal Investigator: Veterans Health Administration Heidi D. Nelson, MD, MPH Quality Enhancement Research Initiative Contributing Investigators: Health Services Research & Development Service Lauren Denneson, PhD Washington, DC 20420 Allison Low, BA Prepared by: Brian W. Bauer, BA Maya O’Neil, PhD Evidence-based Synthesis Program (ESP) Center Devan Kansagara, MD, MCR Portland VA Medical Center Alan R. Teo, MD, MS Portland, OR Devan Kansagara, MD, MCR, Director NOTE: This publication is for internal use of the Department of Veterans Affairs and should not be distributed outside the agency. Benefits and Harms of the Mediterranean Diet Evidence-based Synthesis Program Compared to Other Diets PREFACE The VA Evidence-based Synthesis Program (ESP) was established in 2007 to provide timely and accurate syntheses of targeted healthcare topics of particular importance to clinicians, managers, and policymakers as they work to improve the health and healthcare of Veterans. QUERI provides funding for four ESP Centers, and each Center has an active University affiliation. Center Directors are recognized leaders in the field of evidence synthesis with close ties to the AHRQ Evidence-based Practice Centers. The ESP is governed by a Steering Committee comprised of participants from VHA Policy, Program, and Operations Offices, VISN leadership, field-based investigators, and others as designated appropriate by QUERI/HSR&D. The ESP Centers generate evidence syntheses on important clinical practice topics. These reports help: · Develop clinical policies informed by evidence; · Implement effective services to improve patient outcomes and to support VA clinical practice guidelines and performance measures; and · Set the direction for future research to address gaps in clinical knowledge.
    [Show full text]
  • Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice
    International Journal of Molecular Sciences Article Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice Ilka Wilhelmi 1,2, Alexander Neumann 3 , Markus Jähnert 1,2 , Meriem Ouni 1,2,† and Annette Schürmann 1,2,4,5,*,† 1 Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany; [email protected] (I.W.); [email protected] (M.J.); [email protected] (M.O.) 2 German Center for Diabetes Research (DZD), 85764 Munich, Germany 3 Omiqa Bioinformatics, 14195 Berlin, Germany; [email protected] 4 Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany 5 Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and The University of Potsdam, 14469 Potsdam, Germany * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypoth- esize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or Citation: Wilhelmi, I.; Neumann, A.; ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin Jähnert, M.; Ouni, M.; Schürmann, A.
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name AKT interacting protein Gene Symbol AKTIP Organism Human Gene Summary The mouse homolog of this gene produces fused toes and thymic hyperplasia in heterozygous mutant animals while homozygous mutants die in early development. This gene may play a role in apoptosis as these morphological abnormalities are caused by altered patterns of programmed cell death. The protein encoded by this gene is similar to the ubiquitin ligase domain of other ubiquitin-conjugating enzymes but lacks the conserved cysteine residue that enables those enzymes to conjugate ubiquitin to the target protein. This protein interacts directly with serine/threonine kinase protein kinase B (PKB)/Akt and modulates PKB activity by enhancing the phosphorylation of PKB's regulatory sites. Alternative splicing results in two transcript variants encoding the same protein. Gene Aliases FT1, FTS RefSeq Accession No. NC_000016.9, NT_010498.15 UniGene ID Hs.380897 Ensembl Gene ID ENSG00000166971 Entrez Gene ID 64400 Assay Information Unique Assay ID qHsaCED0046427 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000300245, ENST00000394657, ENST00000570004, ENST00000568022, ENST00000563928, ENST00000565408, ENST00000568596, ENST00000570041, ENST00000564497 Amplicon Context Sequence CTTGTAGACATGCTCCAGAAAGGGTTCATAACGTGTATTCCAAACAAAGAAAGTC AGTGGTGTATCATCCAAATCTTCTGTCTTCGGCATTCACTTTACCCCAGTGC Amplicon Length (bp) 77 Chromosome Location 16:53534143-53537066 Assay Design Exonic Purification Desalted Validation Results
    [Show full text]