Issn: 2277–4998
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glamorgan Botany Group 2017 Excursion Report
Glamorgan Botany Group 2017 Excursion Report With the end of the BSBI’s date-class inching closer, our six excursions this year all focused on 1km squares with precisely zero post-2000 records in the BSBI’s database, and over the course of our visits we recorded plants in 24 of these squares. As always, it is difficult to pick highlights, but April’s Ceratochloa carinata (California Brome) and September’s Juncus foliosus (Leafy Rush) certainly rank among the most significant discoveries... although those preferring plants with less ‘specialist appeal’ may have chosen the fine display of Dactylorhiza praetermissa (Southern Marsh Orchid) in June or the array of bog plants in July and September! Of course, we’re always sharing tips on plant identification, and this year provided plenty of opportunities to do that too – so if you want to get to know Glamorgan’s plants better, then keep an eye out for our 2018 excursion plan, which we’ll send round in February. David Barden, Karen Wilkinson and Julian Woodman Barry – Saturday 22 April On a bright, sunny, warm day, 10 botanists met to explore the open spaces in and around the old villages of Cadoxton and Merthyr Dyfan, now well within the urban area of Barry. Starting in a small area of grassland next to our meeting point, we found a few species of interest including Medicago arabica (Spotted Medick), Lactuca virosa (Great Lettuce), and Papaver lecoqii (Yellow-juiced Poppy, identified by its yellow sap). Moving into Victoria Park (shown on old maps as Cadoxton Common), we found a good range of species of short grassland, with pale- flowered Geranium molle (Dove’s-foot Cranesbill) resulting in an examination of the characteristics separating it from G. -
The Analysis of the Flora of the Po@Ega Valley and the Surrounding Mountains
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NAT. CROAT. VOL. 7 No 3 227¿274 ZAGREB September 30, 1998 ISSN 1330¿0520 UDK 581.93(497.5/1–18) THE ANALYSIS OF THE FLORA OF THE PO@EGA VALLEY AND THE SURROUNDING MOUNTAINS MIRKO TOMA[EVI] Dr. Vlatka Ma~eka 9, 34000 Po`ega, Croatia Toma{evi} M.: The analysis of the flora of the Po`ega Valley and the surrounding moun- tains, Nat. Croat., Vol. 7, No. 3., 227¿274, 1998, Zagreb Researching the vascular flora of the Po`ega Valley and the surrounding mountains, alto- gether 1467 plant taxa were recorded. An analysis was made of which floral elements particular plant taxa belonged to, as well as an analysis of the life forms. In the vegetation cover of this area plants of the Eurasian floral element as well as European plants represent the major propor- tion. This shows that in the phytogeographical aspect this area belongs to the Eurosiberian- Northamerican region. According to life forms, vascular plants are distributed in the following numbers: H=650, T=355, G=148, P=209, Ch=70, Hy=33. Key words: analysis of flora, floral elements, life forms, the Po`ega Valley, Croatia Toma{evi} M.: Analiza flore Po`e{ke kotline i okolnoga gorja, Nat. Croat., Vol. 7, No. 3., 227¿274, 1998, Zagreb Istra`ivanjem vaskularne flore Po`e{ke kotline i okolnoga gorja ukupno je zabilje`eno i utvr|eno 1467 biljnih svojti. Izvr{ena je analiza pripadnosti pojedinih biljnih svojti odre|enim flornim elementima, te analiza `ivotnih oblika. -
Nature Conservation
J. Nat. Conserv. 11, – (2003) Journal for © Urban & Fischer Verlag http://www.urbanfischer.de/journals/jnc Nature Conservation Constructing Red Numbers for setting conservation priorities of endangered plant species: Israeli flora as a test case Yuval Sapir1*, Avi Shmida1 & Ori Fragman1,2 1 Rotem – Israel Plant Information Center, Dept. of Evolution, Systematics and Ecology,The Hebrew University, Jerusalem, 91904, Israel; e-mail: [email protected] 2 Present address: Botanical Garden,The Hebrew University, Givat Ram, Jerusalem 91904, Israel Abstract A common problem in conservation policy is to define the priority of a certain species to invest conservation efforts when resources are limited. We suggest a method of constructing red numbers for plant species, in order to set priorities in con- servation policy. The red number is an additive index, summarising values of four parameters: 1. Rarity – The number of sites (1 km2) where the species is present. A rare species is defined when present in 0.5% of the area or less. 2. Declining rate and habitat vulnerability – Evaluate the decreasing rate in the number of sites and/or the destruction probability of the habitat. 3. Attractivity – the flower size and the probability of cutting or exploitation of the plant. 4. Distribution type – scoring endemic species and peripheral populations. The plant species of Israel were scored for the parameters of the red number. Three hundred and seventy (370) species, 16.15% of the Israeli flora entered into the “Red List” received red numbers above 6. “Post Mortem” analysis for the 34 extinct species of Israel revealed an average red number of 8.7, significantly higher than the average of the current red list. -
Hypericaceae) Heritiana S
University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 5-19-2017 Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae) Heritiana S. Ranarivelo University of Missouri-St.Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Botany Commons Recommended Citation Ranarivelo, Heritiana S., "Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae)" (2017). Dissertations. 690. https://irl.umsl.edu/dissertation/690 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae) Heritiana S. Ranarivelo MS, Biology, San Francisco State University, 2010 A Dissertation Submitted to The Graduate School at the University of Missouri-St. Louis in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biology with an emphasis in Ecology, Evolution, and Systematics August 2017 Advisory Committee Peter F. Stevens, Ph.D. Chairperson Peter C. Hoch, Ph.D. Elizabeth A. Kellogg, PhD Brad R. Ruhfel, PhD Copyright, Heritiana S. Ranarivelo, 2017 1 ABSTRACT Psorospermum belongs to the tribe Vismieae (Hypericaceae). Morphologically, Psorospermum is very similar to Harungana, which also belongs to Vismieae along with another genus, Vismia. Interestingly, Harungana occurs in both Madagascar and mainland Africa, as does Psorospermum; Vismia occurs in both Africa and the New World. However, the phylogeny of the tribe and the relationship between the three genera are uncertain. -
Toxicity Assessment of Hypericum Olympicum Subsp. Olympicum L. On
J Appl Biomed journal homepage: http://jab.zsf.jcu.cz DOI: 10.32725/jab.2020.002 Journal of Applied Biomedicine Original research article Toxicity assessment of Hypericum olympicum subsp. olympicum L. on human lymphocytes and breast cancer cell lines Necmiye Balikci 1, Mehmet Sarimahmut 1, Ferda Ari 1, Nazlihan Aztopal 1, 2, Mustafa Zafer Özel 3, Engin Ulukaya 1, 4, Serap Celikler 1 * 1 Uludag University, Faculty of Science and Arts, Department of Biology, Bursa, Turkey 2 Istinye University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul, Turkey 3 University of York, Department of Chemistry, Heslington, York, United Kingdom 4 Istinye University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey Abstract There is a limited number of studies about the constituents ofHypericum olympicum subsp. olympicum and its genotoxic and cytotoxic potency. We examined the possible antigenotoxic/genotoxic properties of methanolic extract of H. olympicum subsp. olympicum (HOE) on human lymphocytes by employing sister chromatid exchange, micronucleus and comet assay and analyzed its chemical composition by GCxGC-TOF/MS. The anti-growth activity against MCF-7 and MDA-MB-231 cell lines was assessed by using the ATP viability assay. Cell death mode was investigated with fluorescence staining and ELISA assays. The major components of the flower and trunk were determined as eicosane, heptacosane, 2-propen-1-ol, hexahydrofarnesyl acetone and α-muurolene. HOE caused significant DNA damage at selected doses (250–750 µg/ml) while chromosomal damage was observed at higher concentrations (500 and 750 µg/ml). HOE demonstrated anti-growth activity in a dose-dependent manner between 3.13–100 µg/ml. -
Pondnet RECORDING FORM (PAGE 1 of 5)
WETLAND PLANTS PondNet RECORDING FORM (PAGE 1 of 5) Your Name Date Pond name (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 e.g. SP 1235 4325 Determiner name (optional) Voucher material (optional) METHOD (complete one survey form per pond) Aim: To assess pond quality and conservation value, by recording wetland plants. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from wetland vegetation like rushes at the pond’s outer edge, or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put ’?’ by the species name. If you are really unsure put ‘??’. Enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ or send your results to Freshwater Habitats Trust. Aquatic plants (submerged-leaved species) Nitella hyalina (Many-branched Stonewort) Floating-leaved species Apium inundatum (Lesser Marshwort) Nitella mucronata (Pointed Stonewort) Azolla filiculoides (Water Fern) Aponogeton distachyos (Cape-pondweed) Nitella opaca (Dark Stonewort) Hydrocharis morsus-ranae (Frogbit) Cabomba caroliniana (Fanwort) Nitella spanioclema (Few-branched Stonewort) Hydrocotyle ranunculoides (Floating Pennywort) Callitriche sp. -
Attachment A
PLANT EXPLORATION IN THE REPUBLIC OF GEORGIA TO COLLECT GERMPLASM FOR CROP IMPROVEMENT August 26- September 14, 2007 Participants: Joe-Ann H. McCoy, USDA/ ARS/ NPGS, Medicinal Plant Curator North Central Regional Plant Introduction Station G212 Agronomy Hall, Iowa State University, Ames, IA 50011-1170 Phone: 515-294-2297 Fax: 515-294-1903 Email: [email protected] / [email protected] Barbara Hellier, USDA/ ARS/ NPGS, Horticulture Crops Curator Western Regional Plant Introduction Station 59 Johnson Hall, WSU, PO Box 646402, Pullman, WA 99164-6402 Phone: 509-335-3763 Fax: 509-335-6654 Email: [email protected] Georgian Participants: Ana Gulbani Georgian Plant Genetic Resource Centre, Research Institute of Farming Tserovani, Mtskheta, 3300 Georgia. www.cac-biodiversity.org Phone: 995 99 96 7071 Fax: 995 32 26 5256 Email: [email protected] Marina Mosulishvili, Senior Scientist, Institute of Botany Georgian National Museum 3, Rustaveli Ave., Tbilisi 0105 GEORGIA Phone: 995 32 29 4492 / 995 99 55 5089 Email: [email protected] / [email protected] Sandro Okropiridze Mosulishvili, Driver Sandro [email protected] (From Left – Marina Mosulishvili, Sandro Okropiridze, Joe-Ann McCoy, Barbara Hellier, Ana Gulbani below Mt. Kazbegi) 2 Acknowledgements: ¾ The expedition was funded by the USDA/ARS Plant Exchange Office, Beltsville, Maryland ¾ Representatives from the Georgia National Museum and the Georgian Plant Genetic Resources Center planned the itinerary and made all transportation, lodging and guide arrangements ¾ Special thanks -
Hypericeae E Vismieae: Desvendando Aspectos Químicos E
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE FARMÁCIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS Hypericeae e Vismieae: desvendando aspectos químicos e etnobotânicos de taxons de Hypericaceae KRIPTSAN ABDON POLETTO DIEL PORTO ALEGRE, 2021 1 2 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE FARMÁCIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS Hypericeae e Vismieae: desvendando aspectos químicos e etnobotânicos de taxons de Hypericaceae Dissertação apresentada por Kriptsan Abdon Poletto Diel para obtenção do GRAU DE MESTRE em Ciências Farmacêuticas Orientador(a): Profa. Dra. Gilsane Lino von Poser PORTO ALEGRE, 2021 3 Dissertação apresentada ao Programa de Pós-Graduação em Ciências Farmacêuticas, em nível de Mestrado Acadêmico da Faculdade de Farmácia da Universidade Federal do Rio Grande do Sul e aprovada em 26.04.2021, pela Banca Examinadora constituída por: Prof. Dr. Alexandre Toshirrico Cardoso Taketa Universidad Autónoma del Estado de Morelos Profa. Dra. Amélia Teresinha Henriques Universidade Federal do Rio Grande do Sul Profa. Dra. Miriam Anders Apel Universidade Federal do Rio Grande do Sul 4 Este trabalho foi desenvolvido no Laboratório de Farmacognosia do Departamento de Produção de Matéria-Prima da Faculdade de Farmácia da Universidade Federal do Rio Grande do Sul com financiamento do CNPq, CAPES e FAPERGS. O autor recebeu bolsa de estudos do CNPq. 5 6 AGRADECIMENTOS À minha orientadora, Profa. Dra. Gilsane Lino von Poser, pela confiança, incentivo e oportunidades, por me guiar por todos os momentos, por todos os ensinamentos repassados, pelas provocações e “viagens” envolvendo o reino vegetal. Muito obrigado. Ao grupo do Laboratório de Farmacognosia, Angélica, Gabriela, Henrique e Jéssica, pela amizade e bons momentos juntos, dentro e fora do laboratório, de trabalho, companheirismo e descontração. -
Final Report
May 2014 Operationalising a metric of nitrogen impacts on biodiversity for the UK response to a data request from the Coordination Centre for Effects 1 Rowe EC, Jarvis S, Hall J, Monteith D, Henrys P, Evans CD & Smart S (2014) Operationalising a metric of nitrogen impacts on biodiversity for the UK response to a data request from the Coordination Centre for Effects. Final report on Defra project AQ0832, “A metric for assessing changes in biodiversity for the UK’s response to a data request under the Convention on Long-range Transboundary Air Pollution”. CEH project NEC05090. Centre for Ecology and Hydrology, ECW, Deiniol Road, Bangor, LL57 2UW. Executive summary As a signatory party to the Convention on Long Range Transboundary Air Pollution (CLRTAP), the UK has been requested to provide biodiversity metrics for use in assessing impacts of atmospheric nitrogen (N) pollution. Models of soil and vegetation responses to N pollution can predict changes in habitat suitability for many plant and lichen species. Metrics are required to relate changes in a set of species to biodiversity targets. In a previous study, the suitability of the habitat for a set of positive indicator-species was found to be the measure, out of potential outputs from models currently applicable to the UK, which was most clearly related to the assessment methods of habitat specialists at the Statutory Nature Conservation Bodies (SNCBs). This report describes the calculation of values for a metric, based on this principle, for a set of example habitats under different N pollution scenarios. The examples are mainly from Natura-2000 sites, and are defined at EUNIS Level 3 (e.g. -
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at -
The Potential of Fungal Pathogens to Control Hypericum Species In
Plant Protection Quarterly Vol.12(2) 1997 81 necrotic areas, producing acervuli and of- ten perithecia – the sexual stage. The potential of fungal pathogens to control The C. gloeosporioides hyperici strain has Hypericum species in Australia been described as an ‘orphan’ myco- herbicide (Templeton 1992). It has been A A B demonstrated to be effective in the field D.A. McLaren , E. Bruzzese and I.G. Pascoe for specific weed control but has not been A Department of Natural Resources and Environment, Keith Turnbull Research developed for commercial use. A low level Institute and Co-operative Research Centre or Weed Management Systems, PO market of potential in comparison to that Box 48, Frankston, Victoria 3199, Australia. of broad-spectrum chemical herbicides is a B Institute for Horticultural Development, 621 Burwood Highway, Knoxfield, major reason for lack of commercial inter- Victoria 3180, Australia. est in this potential mycoherbicide (Templeton 1992). Shepherd (1995) tested two Canadian Abstract isolates of C. gloeosporioides against three Two fungal pathogens that attack either The Colletotrichum genus has been de- recognised Australian strains of H. St. John’s wort (Hypericum perforatum) scribed (Barnett and Hunter 1972). The perforatum (narrow-leaved, intermediate- or tutsan (Hypericum androsaemum) are genus is part of the Imperfect fungi and leaved and broad-leaved; see Campbell et discussed. The fungus, Colletotrichum has the following distinguishing features: al. 1997) and untyped plants collected from gloeosporioides, is host-specific and • Acervuli disc-shaped or cushion- various areas of Victoria, New South causes significant damage to H. shaped, waxy, subepidermal, typically Wales and Canada. Both C. -
Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.