Guidelines for Monitoring for Landfill Gas at and Near Former Dumps

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Monitoring for Landfill Gas at and Near Former Dumps Guidelines for Monitoring for Landfill Gas at and Near Former Dumps Remediation Division Voluntary Investigation and Cleanup, Emergency Response, Superfund, and Resource Conservation and Recovery Act Corrective Action Programs Introduction This document was developed in cooperation with the Minnesota Department of Health and staff at the Minnesota Pollution Control Agency (MPCA) Closed Landfill Programs to provide guidelines for the monitoring of methane associated with landfill gas (LFG) generated from abandoned unpermitted dumps that may pose risk to existing or proposed occupied structures. Non-methane organic compounds such as volatile organic compounds (VOCs) associated with historical releases at dumps (e.g., trichloroethylene, benzene, etc.) also may present in LFG, although the focus of this guidance principally concerns the monitoring of and response to methane hazards. Abandoned dumps are not included in the state legislation which provides for the cleanup of qualified landfills. The releases associated with abandoned dumps are commonly addressed by voluntary or responsible parties with the MPCA Superfund or Voluntary Investigation and Cleanup (VIC) Programs. Detailed guidance regarding the investigation, mitigation or long term management of subsurface landfill gas is beyond the scope of this document. Generation and migration of landfill gas Landfill gas (LFG) generated from landfills and abandoned mixed municipal dumps consists primarily of methane, carbon dioxide and smaller fractions of numerous other gases including nitrogen, oxygen and ammonia produced by the biodegradation of organic matter. This biodegradation is the result of the activity of microorganisms that are found naturally occurring in both wastes and soils. Methane can also be generated by naturally occurring buried organic deposits (e.g., peaty sediments) and can be difficult to distinguish from other methane sources. Although the processes by which LFG is generated are similar at all dumps, considerable variability will exist between dumps in the amount of gas generated, the composition of the gas and the gas generation rate. Generally, methane generation is divided into four distinct phases: Phase I Upon initial placement of the waste, an aerobic phase develops characterized by rapid oxygen depletion as a result of increased microbial activity. This process can last for several months in larger dumps. Phase II At the end of Phase I, oxygen is depleted and anaerobic microbial activity is initiated, signaling the beginning of Phase II. During the anaerobic phase, leachate is produced, acidity is increased and there is a steady increase in hydrogen and carbon dioxide production. Phase III The start of Phase III is initiated by the production of methane gas. This is an anaerobic phase characterized by an accelerated increase in methane production with corresponding decreases in the levels of carbon dioxide, hydrogen, nitrogen, and acidity. Phase IV The final phase is characterized by a long period of methane production and waste degradation as methanogenic microorganisms reach steady state populations and gas constituent concentrations stabilize. Methane generation may last from several years to decades. The length of the four phases of methane generation will vary considerably for different dump settings depending upon the amount of waste present, the composition of the waste material, moisture levels, temperature, and operational practices of the former dump. c-rem3-04 November 2011 Minnesota Pollution Control Agency • 520 Lafayette Rd. N., St. Paul, MN 55155-4194 • www.pca.state.mn.us 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats One of the most significant factors controlling waste degradation is moisture content. The mummified conditions observed at many dumps and landfills, as evidenced by the readability of old newspapers is directly related to a relative lack of moisture needed to promote degradation. Capping of a dump or landfill to reduce moisture infiltration will therefore, also reduce the rate of gas production and waste degradation. The presence of a cap also may essentially eliminate vertical LFG escape and promote lateral LFG migration. Waste composition affects both the methane generation rate and the total amount of methane produced. Wastes containing higher biodegradable organic content, such as food waste, wood and paper, will produce more methane than more inert material such as concrete, bricks, plastic and glass. Typical municipal wastes products found in former dumps such as food and yard debris contain high amounts of biodegradable material that can result in high levels of methane generation. Temperature also has an effect upon microbial activity. Generally, higher fill temperatures result in higher rates of methane production. The optimal temperature range for methane generation is between about 95ºF to 120ºF. Methane generation can be nonexistent at temperatures below 50ºF, which may be an important consideration in Minnesota. Factors affecting LFG emissions and migration LFG emissions to the atmosphere can occur via vertical migration through the surface cover of dump and/or at perimeter locations around the dump through a combination of lateral and vertical migration. LFG migrates from areas of high pressure to areas of low pressure, driven by subsurface and atmospheric pressure gradients. High pressure conditions are created within the waste mass of a dump when methane gas generation is taking place. Meteorological conditions can also affect the migration of LFG. Relative changes in barometric pressure may accentuate LFG pressure gradients in the subsurface around dump sites resulting in an increase in vertical and lateral gas migration, and a concomitant increase in the potential for vertical escape of emissions to the atmosphere. LFG migration can be expected to occur laterally and vertically along preferential pathways where higher permeable native soils or fill are present or along buried utility corridors backfilled with coarser or aggregate than surrounding soils. Lateral LFG migration can be enhanced during winter months as vertical gas escape routes are limited by thick frozen soil columns typical of Minnesota winters. Similarly, at dump sites where impermeable covers, engineered caps or asphalt surfaces have been constructed the potential for lateral migration of LFG beyond the boundaries of the dump site can be enhanced although the resulting decrease of infiltrating moisture from impermeable caps should support lower organic degradation rates. Environmental concerns of LFG Environmental impacts of LFG and of methane gas in particular, can be separated into three main categories: imminent physical hazards, inhalation risks, and ecological impacts. LFG hazards The principal hazards associated with LFG are explosion and fire. There is a risk that methane can migrate laterally and vertically through the unsaturated soil column and collect in enclosed or confined spaces where a spark or other ignition source can trigger an explosion or fire. Methane presents an explosive hazard at concentrations between 5 percent and 15 percent by volume, in air. The lower and upper levels of the range of combustible gas concentration within which explosion may occur are defined for a specific combustible gas, and are known, respectively, as the Lower Explosion Limit (LEL) and the Upper Explosion Limit (UEL). The LEL for methane corresponds to five percent methane by volume in air, which is equivalent to a relative concentration of 50,000 parts per million (ppm) methane by volume. The UEL for methane is 15 percent methane by volume in air. Inhalation risks Risks associated with LFG inhalation can include both short term and long term exposure risks. Both of the two main LFG components, methane and carbon dioxide, are colorless and odorless, and have the capability to displace oxygen, which can result in conditions with the potential for asphyxiation. The accumulation of such lethal levels is especially a concern in confined spaces, such as underground utility structures and trenches, and within enclosed spaces and basements in buildings located at or adjacent to a dump or a landfill. The short term effects of LFG inhalation can include headaches and irritability. Hydrogen sulfide, an odorous gas, which can be found at toxic levels in LFG, is an irritant to the eyes and respiratory system and can also be an asphyxiant. Long term inhalation risks may be associated with VOCs associated with LFG. Guidelines for Monitoring Landfill Gas at Near Former Dumps • c-rem3-04 • November 2011 Page 2 of 10 Ecological risks LFG can stress or even kill plant life by displacing oxygen within the soil near the roots of plants. Crop damage can occur at farms near landfills. Additionally, although present in much smaller concentrations than methane and carbon dioxide, some non-methanogenic VOCs can contribute to the formation of ozone, a gas which, in addition to having deleterious respiratory effects, also can reduce plant growth and contribute to vegetation damage. Landfill Gas Monitoring and Analysis Preliminary subsurface methane surveys Gas surveys should be conducted at abandoned dumps to assess methane risk levels to nearby or proposed structures. Due to the potential for changes in gas concentrations that may occur seasonally along with changes in moisture, ground temperature and frost conditions, LFG monitoring should be conducted at least three to four times per year. To the degree
Recommended publications
  • Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Atmospheric Gases Student Handout Atmospheric Gases
    Atmospheric Gases Student Handout Atmospheric Gases Driving Question: What is our atmosphere made of? In this activity you will: 1. Explore the variety and ratio of compounds and elements that make up the Earth’s atmosphere. 2. Understand volumetric measurements of gases in the atmosphere. 3. Visually depict the composition of the atmosphere. Background Information: Understanding Concentration Measurements In this activity, we will investigate the gas composition of our planet’s atmosphere. We use percentages to represent units of gas composition. A percent (%) is equivalent to 1 part out of 100 equal units. 1% = 1 part out of 100 For smaller concentrations scientists use parts per million (ppm) to represent concentrations of gases (or pollutants) in the atmosphere). One ppm is equivalent to 1 part out of 1,000,000 if the volume being measured is separated into 1,000,000 equal units. 1 ppm = 1 part out of 1,000,000 In this activity, you will use graph paper to represent the concentration of different gases in the atmosphere. Copyright © 2011 Environmental Literacy and Inquiry Working Group at Lehigh University Atmospheric Gases Student Handout 2 Here are some examples to help visualize parts per million: The common unit mg/liter is equal to ppm concentration Four drops of ink in a 55-gallon barrel of water would produce an "ink concentration" of 1 ppm. 1 12-oz can of soda pop in a 30-meter swimming pool 1 3-oz chocolate bar on a football field Atmospheric Composition Activity You will be creating a graphic model of the atmosphere composition using the Atmospheric Composition of Clean Dry Air activity sheet.
    [Show full text]
  • Tracer Applications of Noble Gas Radionuclides in the Geosciences
    To be published in Earth-Science Reviews Tracer Applications of Noble Gas Radionuclides in the Geosciences (August 20, 2013) Z.-T. Lua,b, P. Schlosserc,d, W.M. Smethie Jr.c, N.C. Sturchioe, T.P. Fischerf, B.M. Kennedyg, R. Purtscherth, J.P. Severinghausi, D.K. Solomonj, T. Tanhuak, R. Yokochie,l a Physics Division, Argonne National Laboratory, Argonne, Illinois, USA b Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, USA c Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA d Department of Earth and Environmental Sciences and Department of Earth and Environmental Engineering, Columbia University, New York, USA e Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA f Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, USA g Center for Isotope Geochemistry, Lawrence Berkeley National Laboratory, Berkeley, USA h Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland i Scripps Institution of Oceanography, University of California, San Diego, USA j Department of Geology and Geophysics, University of Utah, Salt Lake City, USA k GEOMAR Helmholtz Center for Ocean Research Kiel, Marine Biogeochemistry, Kiel, Germany l Department of Geophysical Sciences, University of Chicago, Chicago, USA Abstract 81 85 39 Noble gas radionuclides, including Kr (t1/2 = 229,000 yr), Kr (t1/2 = 10.8 yr), and Ar (t1/2 = 269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples.
    [Show full text]
  • Landfill Gas Investigations at Former Landfills and Disposal Sites
    Landfill Gas Investigations At Former Landfills and Disposal Sites California Department of Resources Recycling and Recovery May 2014 S T A T E O F C ALIFORNIA Edmund G. Brown Jr. Governor Matt Rodriquez Secretary, California Environmental Protection Agency Department of Resources Recycling and Recovery CalRecycle Caroll Mortensen Director Public Affairs Office 1001 I Street (MS 22-B) P.O. Box 4025 Sacramento, CA 95812-4025 1-800-RECYCLE (California only) or (916) 341-6300 Publication # DRRR-2014-1516 To conserve resources and reduce waste, CalRecycle reports are produced in electronic format only. If printing copies of this document, please consider use of recycled paper containing 100 percent postconsumer fiber and, where possible, please print on both sides of the paper. Copyright © 2014 by the California Department of Resources Recycling and Recovery (CalRecycle). All rights reserved. This publication, or parts thereof, may not be reproduced in any form without permission. This report was prepared by staff of the Department of Resources Recycling and Recovery (CalRecycle) to provide information or technical assistance. The statements and conclusions of this report are those of CalRecycle staff and not necessarily those of the department or the State of California. The state makes no warranty, expressed or implied, and assumes no liability for the information contained in the succeeding text. Any mention of commercial products or processes shall not be construed as an endorsement of such products or processes. The California Department of Resources Recycling and Recovery (CalRecycle) does not discriminate on the basis of disability in access to its programs. CalRecycle publications are available in accessible formats upon request by calling the Public Affairs Office at (916) 341-6300.
    [Show full text]
  • Equation of State for Natural Gas Systems
    Equation of State for Natural Gas Systems. m A thesis submitted to the University of London for the Degree of Doctor of Philosophy and for the Diploma of Imperial College by Jorge Francisco Estela-Uribe. Department of Chemical Engineering and Chemical Technology Imperial College of Science, Technology and Medicine. Prince Consort Road, SW7 2BY London, United Kingdom. March 1999. Acknowledgements. I acknowledge and thank the sponsorship I received from the following institutions: Fundacion para el Futuro de Colombia, Colfiituro; Pontificia Universidad Javeriana, Seccional Cali; the Committee of Vice-Chancellors and Principal of the Universities of the United Kingdom and Ruhrgas AG. Without their economic support my stay in London and the completion of this work would have been impossible. My greatest gratitude goes to my Supervisor, Dr Martin Trusler. His expert guidance and advice were always fundamental for the success of this research. He helped me with abundant patience and undying commitment and his optimism regarding the possibilities of the project was always inspirational for me. He also worked shoulder by shoulder with me on solving a good number of experimental problems, some of them were just cases of bad luck and for some prominent ones, I was the only one to blame. Others helped me willingly as well. My labmate, Dr Andres Estrada-Alexanders, was quite helpful in the beginning of my research, and has carried on being so. He not only did do well in his role as the senior student in the laboratory, but also became a good fnend of mine. Another good friend of mine, Dr Abdel Fenghour, has always been an endless source of help and information.
    [Show full text]
  • New Technology Enables Biogas Plant Optimisation
    NEW TECHNOLOGY ENABLES BIOGAS PLANT OPTIMISATION Governments around the world are seeking to lower greenhouse gas (GHG) emissions in the fight against climate change, to reduce waste to landfill, and to increase their utilisation of renewable energy in compliance with international agreements. Consequently, in many countries, subsidies have been made available to encourage the growth of the biogas sector. According to the International Renewable Energy Agency (IRENA) a carbon dioxide and humidity. Importantly, the instrument is Ex 1. Hydrolysis – complex organic matter such as proteins, third of global power capacity is now based on renewable energy, certified up to Zone 0/1, which enables in-line installation in carbohydrates and fats are broken down by bacterial enzymes and nearly two-thirds of all new power generation capacity added pipes and ducts where explosive atmospheres exist, with the area into sugars, fatty acids and amino acids. in 2018 was from renewables. Much of the recent growth was surrounding the pipes classified as Zone 1. provided by solar and wind energy, but global bioenergy capacity 2. Acidogenesis – various fermentation reactions convert larger has roughly trebled in the last 10 years. molecules into organic acids, alcohols, ammonia, carbon The generation of biogas from wet putrescible wastes and crops Anaerobic digestion – the process dioxide, hydrogen and hydrogen sulphide. produces a more reliable and predictable source of renewable Four main processes take place inside the digester to produce 3. Acetogenesis - the fermented products are oxidised into simpler energy than wind or solar. However, as these technologies become biogas. All of these processes are mediated by different groups forms such as acetate and carbon dioxide.
    [Show full text]
  • Appendix a Basics of Landfill
    APPENDIX A BASICS OF LANDFILL GAS Basics of Landfill Gas (Methane, Carbon Dioxide, Hydrogen Sulfide and Sulfides) Landfill gas is produced through bacterial decomposition, volatilization and chemical reactions. Most landfill gas is produced by bacterial decomposition that occurs when organic waste solids, food (i.e. meats, vegetables), garden waste (i.e. leaf and yardwaste), wood and paper products, are broken down by bacteria naturally present in the waste and in soils. Volatilization generates landfill gas when certain wastes change from a liquid or solid into a vapor. Chemical reactions occur when different waste materials are mixed together during disposal operations. Additionally, moisture plays a large roll in the speed of decomposition. Generally, the more moisture, the more landfill gas is generated, both during the aerobic and anaerobic conditions. Landfill Gas Production and Composition: In general, during anaerobic conditions, the composition of landfill gas is approximately 50 percent methane and 50 percent carbon dioxide with trace amounts (<1 percent) of nitrogen, oxygen, hydrogen sulfide, hydrogen, and nonmethane organic compounds (NMOCs). The more organic waste and moisture present in a landfill, the more landfill gas is produced by the bacteria during decomposition. The more chemicals disposed in a landfill, the more likely volatile organic compounds and other gasses will be produced. The Four Phases of Bacterial Decomposition: “Bacteria decompose landfill waste in four phases. The composition of the gas produced changes with each of the four phases of decomposition. Landfills often accept waste over a 20-to 30-year period, so waste in a landfill may be undergoing several phases of decomposition at once.
    [Show full text]
  • Landfill Gas Fugitive Emissions Monitoring Guideline Publication 1684, February 2018 Guideline
    Landfill gas fugitive emissions monitoring guideline Publication 1684, February 2018 Guideline Contents 1. Introduction ........................................................................................................................................................ 2 1.1 Document history ......................................................................................................................................... 2 1.2 Scope and purpose ...................................................................................................................................... 2 1.3 Application of this guideline ......................................................................................................................... 2 1.4 Legal status of this guideline ........................................................................................................................ 2 1.5 Health and safety precautions ..................................................................................................................... 2 2. Objectives of landfill gas fugitive emissions monitoring ..................................................................................... 3 2.1 Notification to EPA where BPEM landfill gas action levels are exceeded .................................................... 3 3. Key factors that influence the monitoring of landfill gas ..................................................................................... 3 4. Instruments .......................................................................................................................................................
    [Show full text]
  • Attachment 5 Groundwater Monitoring Plan
    Fairbanks Landfill, Harris County Permit No. MSW-1565B Part III, Site Development Plan ATTACHMENT 5 GROUNDWATER MONITORING PLAN TXL0263 August 2013 Attachment 5-Cvr 5A-3 5A-4 5A-5 5A-6 5A-7 5A-8 5A-9 5A-10 5A-11 5A-12 5A-13 5A-14 5A-15 5A-16 5A-17 5A-18 5A-19 Fairbanks Landfill, Harris County Permit No. MSW-1565B Part III, Site Development Plan ATTACHMENT 6 LANDFILL GAS MANAGEMENT PLAN TXL0263 Geosyntec Consultants August 2013 Attachment 6-Cvr Fairbanks Landfill, Harris County Permit No. MSW-1565B Part III, Attachment 6- Landfill Gas Management Plan 1. INTRODUCTION This Landfill Gas Management Plan (LGMP) was prepared for the Fairbanks Landfill (the facility) to describe the program that will be implemented to monitor for potential off-site methane migration and potential accumulation of methane in onsite structures, and related features to manage and control landfill gas (LFG). This plan also outlines notification procedures and possible remediation activities, if required. LFG is a byproduct of waste decomposition. The Fairbanks Landfill is a Type IV municipal solid waste (MSW) facility, and as such will receive primarily construction and demolition (C&D)-type waste and is not allowed to accept putrescible waste. Thus, the waste composition at the facility will contain a smaller quantity of decomposable material compared to typical Type I MSW facilities. Nevertheless, LFG generation will still likely occur due to decomposable material (e.g., wood waste) within the landfill. In general, LFG may contain approximately 50 percent to 60 percent methane by volume. Methane is an odorless gas, yet potentially explosive in concentrations between 5 and 15 percent by volume in air (i.e., the lower explosive limit (LEL) and upper explosive limit (UEL), respectively).
    [Show full text]
  • Natural Gas Compressibility Factor Correlation Evaluation for Niger Delta Gas Fields
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 4 (Jul. - Aug. 2013), PP 01-10 www.iosrjournals.org Natural Gas Compressibility Factor Correlation Evaluation for Niger Delta Gas Fields Obuba, J*.1, Ikiesnkimama, S.S.2, Ubani, C. E.3, Ekeke, I. C.4 12Petroleum/Gas, Engineering/ University of Port Harcourt, Nigeria 3Department of Petroleum and Gas Engineering University of Port Harcourt Port Harcourt, Rivers State. 4Department of Chemical Engineering Federal University of Technology Oweri, Imo State Nigeria. Abstract: Natural gas compressibility factor (Z) is key factor in gas industry for natural gas production and transportation. This research presents a new natural gas compressibility factor correlation for Niger Delta gas fields. First, gas properties databank was developed from twenty-two (22) laboratory Gas PVT Reports from Niger Delta gas fields. Secondly, the existing natural gas compressibility factor correlations were evaluated against the developed database (comprising 22 gas reservoirs and 223 data sets). The developed new correlation was used to compute the z-factors for the four natural gas reservoir system of dry gas, solution gas, rich CO2 gas and rich condensate gas reservoirs, and the results were compared with some exiting correlations. The performances of the developed correction indicated better statistical ranking, good graph trends and best crossplots parity line when compared with correlations evaluated. From the results the new developed correlation has the least standard error and absolute error of (stdEr) of 1.461% and 1.669% for dry gas; 6.661% and 1.674% for solution; 7.758% and 6.660% for rich CO2 and 7.668% and 6.661 % for rich condensate gas reservoirs.
    [Show full text]
  • Reviewing Martian Atmospheric Noble Gas Measurements: from Martian Meteorites to Mars Missions
    geosciences Review Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions Thomas Smith 1,* , P. M. Ranjith 1, Huaiyu He 1,2,3,* and Rixiang Zhu 1,2,3 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Box 9825, Beijing 100029, China; [email protected] (P.M.R.); [email protected] (R.Z.) 2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (T.S.); [email protected] (H.H.) Received: 10 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios.
    [Show full text]
  • A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine O
    A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine O. Jahanian, S. A. Jazayeri To cite this version: O. Jahanian, S. A. Jazayeri. A Comprehensive Numerical Study on Effects of Natural Gas Com- position on the Operation of an HCCI Engine. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (3), pp.503-515. 10.2516/ogst/2011133. hal-01936489 HAL Id: hal-01936489 https://hal.archives-ouvertes.fr/hal-01936489 Submitted on 27 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst100033_Jahanian 6/06/12 16:01 Page 503 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 3, pp. 503-515 Copyright © 2011, IFP Energies nouvelles DOI: 10.2516/ogst/2011133 A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine O. Jahanian* and S.A. Jazayeri Department of Mechanical Engineering, K. N. Toosi University of Technology, P.O. Box 19395-1999, Tehran - Iran e-mail: [email protected] - [email protected] * Corresponding author Résumé — Une étude numérique complète sur les effets de la composition du gaz naturel carburant sur le réglage d'un moteur HCCI — Le moteur HCCI (Homogeneous Charge Compression Ignition, ou à allumage par compression d'une charge homogène) est une idée prometteuse pour réduire la consommation de carburant et les émissions polluantes.
    [Show full text]