Zero Carbon Britain 2030: a New Energy Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Zero Carbon Britain 2030: a New Energy Strategy ZERO CARBON BRITA N A NEW ENERGY STRATEGY The second report of the 2030 Zero Carbon Britain project 2 Foreword Forewords and quotes below from: Professor Graham Parkhurst, Centre for Transport and Society Sir John Haughton, Former Co-Chair, Intergovernmental Panel on Climate Change Professor Godfrey Boyle, Open University Rob Hopkins, Transition Towns Founder Paul Davies, Wates Living Spaces Dr Victoria Johnson, new economics foundation Hugo Spowers, Riversimple. “As historically the first high-carbon economy to have developed, and today being a significant net importer of carbon-intensive goods, the UK has a particular responsibility to take political and practical leadership in the international process of decarbonisation. zerocarbonbritain2030 makes an important contribution to the climate change debate. It is pioneering in offering a fully integrated routemap for addressing carbon emissions from the UK perspective, going beyond the most ambitious targets hitherto to propose a 90 percent reduction by 2030 (rather than the 2050 typically discussed), together with ‘carbon capture’ equivalent to the remaining 10 per cent. In order to effectively eliminate carbon emissions from British industry, homes, power generation, and transport systems, the report seeks to “power down” high-carbon living by reducing energy demand, so as to facilitate a transfer to fossil-free supply. Importantly, the carbon reduction benefits are placed in the context of wider benefits of ‘regime change’, including avoiding the spectre of ever more expensive and scarce oil, the opportunities for ‘green jobs’ and the creation of a more equitable society. New technologies and more efficient design are evaluated as an essential part of the decarbonisation strategy, to be “powered up”. Offshore wind and wave energy are identified as having the strongest potential as renewable energy sources, providing most of the fossil-fuel free energy mix by 2030 (and with the latter including no new nuclear capacity). Although embracing the importance of new technologies, the report does recognise the limits to ‘fit and forget’ fixes, identifying more radical reform as essential in the agricultural sector, which in the future will focus on ‘locking in’ carbon in the soil and vegetation, and in spatial and transport planning, to prioritise the needs of people, rather than energy-intense vehicles. These strategic shifts will also need to be accompanied by behaviour and lifestyle changes by citizens, such as more walking and cycling and less meat consumption. 3 Whilst it is the nature of scenarios that they are rarely followed precisely by actual events, zerocarbonbritain2030 has effectively applied a ‘backcasting’ approach to demonstrate that at least one set of policy options and technical measures exists to eliminate carbon emissions whilst simultaneously enhancing our quality of life. We now need the political leadership, public consensus, and ongoing scientific support to turn possibility into reality.” Professor Graham Parkhurst, Centre for Transport and Society, University of the West of England. “This new report from the Centre for Alternative Technology is much to be welcomed, coming as it does at the start of a new administration. The goal of peak emissions by 2016 is less than seven years away. Everything necessary to reach that first goal will have to be put in place by the next government – a challenge they must take up with unusual urgency. A year ago in May 2009, a Nobel Laureates Symposium on Climate Change hosted in London by the Prince of Wales had as its title, The Fierce Urgency of Now. One of the few positive outcomes of the Copenhagen Conference in December 2009 was the near-global consensus for a goal of 2o C for the maximum rise of global average temperature from its pre-industrial value due to human activities. That is a necessary, but tough target for the world to meet. It will require, for instance, peak global emissions by about 2016. However it was very disappointing that little was accomplished at Copenhagen to set up the actions required for its realization. Two reasons are often advanced to delay action on climate change. The first is to present climate change as a longer-term issue and argue that of more immediate concern are big issues like world poverty. That may appear to be the case until it is realised that the plight of the world’s poor will become enormously worse unless strong action to curb climate change is taken now. The second is to suggest the financial crisis must have top priority and action on climate change will have to wait. That again may seem good sense until it is realised that there is much to be gained if both crises are tackled together. Also, many studies, for instance those by the International Energy Agency1 (IEA, 2008), demonstrate that necessary action is affordable; increased investment in the short term is balanced by savings that accrue in the longer term. This report presents detailed information and argument to demonstrate that zero emissions by 2030 is within reach – given appropriate commitment, dedication and effort on the part of government, industry, NGOs and the public at large. In calling for a common sense of purpose, not just nationally but internationally too, it points out the benefits to society – its health, social welfare and sustainability – that will result from the pursuit of such a goal. May I urge you to study carefully its arguments and its findings.” Sir John Houghton, Former Co-Chair of the Intergovernmental Panel on Climate Change. 4 “Since their pioneering Low Energy Strategy for the UK in 1977, the Centre for Alternative Technology has been pointing the way towards a sustainable energy future for Britain. Now the CAT researchers have done it again. Their new zerocarbonbritain2030 report, building on the analysis in the first Zero Carbon Britain report in 2007, describes in detail how the UK could make the transition to a zero carbon society as early as 2030. CAT’s integrated approach involves “powering-down” (reducing energy wastage) and “powering-up” (deploying renewable energies), combined with lifestyle and land use changes. It demonstrates that the UK economy could be 100% powered by renewables – if we can muster the political will to make it happen. And if we do, the Britain of 2030 will be a greener, cleaner, fairer place. ZCB2030’s proposals are more radical than those of the UK Government, which envisages a much slower 80% reduction in carbon emissions by 2050. But even if they don’t yet agree with all of its conclusions, ZCB2030 should be essential reading for politicians, policymakers, researchers and anyone else interested in positive responses to the challenges of climate change and energy security.” Godfrey Boyle, Professor of Renewable Energy, Open University. “The first zerocarbonbritain report, published in June 2007, was an extraordinary document. Although aspects of a zero carbon Britain were missing from it, such as food and farming and behaviour change, it was an audaciously bold and desperately needed framing of a key concept – how the UK could move to being a zero carbon economy over 20 years. Rather than come up with endless reasons why this seemingly impossible task couldn’t be done, the default political response to climate change at the time, it set out a bold vision for a lower-energy future. It was a visionary and inspired project, as well as a prototype for a larger and more detailed follow-up. It is that follow- up, zerocarbonbritain2030, that you now hold in your hands. With Government still in denial about peak oil, with the scale of the changes necessitated to have the best possible chances of avoiding catastrophic climate change leading some to deem them impossible, and others to retreat into a rejection of the science, ZCB2030 is a breath of fresh air. We stand at an unprecedented crossroads, making choices now that will profoundly affect the future. What ZCB2030 does brilliantly is to argue that the approach of powering down (reducing demand) and powering up (building a new, zero carbon energy infrastructure) is not a hair shirt, survivalist rejection of modernity, rather it is the logical, achievable next step forward for the people of these islands. It is a move towards entrepreneurship, resilience, connectedness and stability. It offers a return to scale, a bringing home of the impacts of our actions, and a shift to a world that we can hand on to our grandchildren with relief and pride, and with a twinkle in our eyes. Bringing together much of current thinking on energy, food, climate change, economics and the psychology of engaging people in such a monumental undertaking, it argues its case patiently and clearly. In the Transition movement, we often ask the question, ‘what would it feel like, look 5 like, smell like, sound like, if you woke up in 2030 and we had successfully managed this transition?’ ZCB2030 offers a very tangible taste of such a world, of energy-efficient homes, with less need to travel and highly efficient public transport for when we do need to, more localised food production and a more seasonal diet, of energy production owned and managed by the communities it serves. For many of you reading this report, some of these things will already be an integral part of your lives. In all the time that I taught gardening and permaculture, nobody ever came back to me and said that their quality of life had been diminished by acquiring those skills. Likewise, the societal shift in this direction will be a collective journey, a collective undertaking, and one that offers an increase in our quality of life, rather than a decrease. Inevitably with a work going against the status quo in such a fundamental way, such as ZCB2030, questions arise, such as whether, in the light of the UK’s recent economic turmoils and declining levels of surplus net energy, we can actually afford to implement the new infrastructure set out here? Will there be sufficient economic slack to allow us to resource this? One thing is certain, that the transition set out here is the clearest, best researched and most attractive option that is currently on the table, and we are beholden to work out how to make it, or something that has built on it, happen.
Recommended publications
  • Energy Descent Action Planning for Hepburn Shire Final Report
    Energy Descent Action Planning for Hepburn Shire Final Report October 2011 David Holmgren & Ian Lillington !!!!!!!!!!!!!!!!!!!!!! 16 Fourteenth St, Hepburn Victoria. 3461 HOLMGREN DESIGN SERVICES Phone: 03 53483636 Email: [email protected] the source of permaculture vision and innovation Web site: www.holmgren.com.au !"#$%&'%()*+!&,-&.(-/$01"%2&(%3+03&(42&5.67&(!3+#+03&7(3%+!8&9"4$0&& &'! ()*+),*- ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' $! &'&! !./0!123456.73.4 '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' $! &'"! !!829:2303.4!2;!./0!123456.731<'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' =! &'$! !8>?.?1?494!2;!./0!123456.731< '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' @! "'! A(8BA!C()*+DE*DF!8(DF*GF''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' @! $'! FH*!8(EEID,FJ!8(DF*GF>L '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' K! ='! FH*!$ !M*NF*EO*+!-(+PMH(N''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' Q! ='&! I4?3R!B!C>?L!F7S60!B3L!,3L?17.2>!B::>271/''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
    [Show full text]
  • Using Cap and Share to Control Emissions from the EU Transport Sector
    Using Cap and Share to control emissions from the EU transport sector Executive Summary. Cap and Share is a cap and trade system in which tradable rights to whatever is being capped are distributed on an equal-per-person basis to every adult in the general population rather than being auctioned or being grandfathered (given) to existing users. Because those receiving the rights under C&S sell them within a year of receipt, it automatically compensates the least-well- off in society for the price rises that the shortages brought about by the imposition of the cap inevitably generate. This fairness and built-in fiscal neutrality make it a more politically acceptable way to control emissions than other allocation methods. Carbon dioxide emissions from all forms of transport apart from rail are rising within the EU at a time when those from other sectors are falling. Within the transport sector, emissions from road vehicles are rising most rapidly in absolute terms. However, the EU emissions trading system is unsuited to controlling them because of the way it was designed. As only aviation and marine emissions can be taken into the ETS with reasonable ease, this is what the Commission is proposing to do. This paper argues that capping some transport emissions and not others would be a serious mistake because the various transport modes are in competition with each other. Not only would the Commission's proposals distort competition between the modes but, because of the short-term inelasticity of the demand for transport, they are unlikely to cause total transport emissions to fall.
    [Show full text]
  • Personal Carbon Allowances Revisited
    PERSPECTIVE https://doi.org/10.1038/s41893-021-00756-w Personal carbon allowances revisited Francesco Fuso Nerini 1 ✉ , Tina Fawcett2, Yael Parag 3 and Paul Ekins4 Here we discuss how personal carbon allowances (PCAs) could play a role in achieving ambitious climate mitigation targets. We argue that recent advances in AI for sustainable development, together with the need for a low-carbon recovery from the COVID-19 crisis, open a new window of opportunity for PCAs. Furthermore, we present design principles based on the Sustainable Development Goals for the future adoption of PCAs. We conclude that PCAs could be trialled in selected climate-conscious technologically advanced countries, mindful of potential issues around integration into the current policy mix, privacy concerns and distributional impacts. limate change could undermine the achievement of at were proposed to be sold by individuals via banks and post offices to least 72 Targets across the Sustainable Development Goals fossil fuel companies11. In California, household carbon trading was C(SDGs)1. The development of a just and equitable transition proposed for household energy, and managed by the utilities12. In to a net-zero society is vital to avoiding the worst impacts of climate France, centrally managed tradable transport carbon permits were change1. However, by May 2021, Climate Action Tracker2 estimated assessed related to private transport13. Scholars from the University that climate policies implemented across the world at present, of Groningen have proposed European Union (EU)-wide emis- including the effect of the pandemic, will lead to a temperature rise sions trading for households and transport, embedded in the EU of 2.9 °C by the end of the century.
    [Show full text]
  • FEASTA Submission to …
    Submission of Evidence to the ERFA Committee’s examination of international climate policy post-2012 Executive Summary ● There is an urgent need for climate action but the UNFCCC process is moving at a snail's pace. It has become a Gordian Knot of complexity. A simpler process could cut through the knot and lead to a climate treaty being achieved in a relatively short period. ● The overall goals of the process need to be established. If these can be kept simple, it is much easier for competing schemes to be compared and for existing schemes such as the EU ETS to be used to achieve them. ● Simple schemes are also the easiest to explain and communicate. So far, the public has been unable to follow the UNFCCC process because it is just too involved. ● Equitable schemes are the hardest to oppose and so have the greatest chance of success. ● The ideal climate proposal should therefore be simple and equitable. A simple and equitable scheme is proposed in this paper. This is Cap and Share, a development of the well-known Contraction and Convergence approach. 1.Introduction 1.1 FEASTA is the Foundation for the Economics of Sustainability. It is based in Dublin and has an international membership (see www.feasta.org). Our evidence here relates mainly to items 1, 3 and 7 in the EFRA Committee’s list of issues in its Call for Evidence. 2. Background 2.1 There is a clear consensus that there is an urgent need to take effective action to limit the extent of climate change.
    [Show full text]
  • Oriental Despotism. a Comparative Study of Total Power. New Haven: Yale University Press
    credo – economic beliefs in a world in crisis Wittfogel, K. A. (1957). Oriental Despotism. A Comparative Study of Total Power. New Haven: Yale University Press. Index Wkipedia. (2013, August). Kaldor-Hicks Efficiency. Retrieved December 29th, 2013, from Wkipedia: Abatement cost conceived of like an insurance premium, 381 Australian aboriginal people, 118, 129, 131 https://en.wikipedia.org/wiki/Kaldor%E2%80%93Hicks_efficiency Aborigines and land care, 118-131 Austrian economists, 64, 176, 296, 312, 314 Adaptation level, 53 Austrian school, 311 WorkingGroup1. (2013). IPCC Process. Retrieved January 3rd, 2014, from Inter-governmental Panel on Advertisers, 71, 75-76 Authenticity, 80, 83, 354 Climate Change: http://www.climatechange2013.org/ipcc-process/ Advertising, 73-77, 79-80, 88, 97, 237, 301, 351 Autistic economics, 54, 435 Xenophon, & Dakyns(Tr), H. H. (2013, January). The Economist. Retrieved December 31st, 2013, from Affluenza, 80, 83-84, 95, 420, 444 Autonomy, 12, 124, 234, 321, 437 Project Gutenberg: http://www.gutenberg.org/files/1173/1173-h/1173-h.htm Age of Commerce, 29-30, 122, 127, 152 Autopoiesis, 124 Agricultural policy, 157 ‘Bads’ and goods, 414 Yan, K. (2012, February 2nd). The Global CDM Hydro Hall of Shame. Retrieved January 3rd, 2014, from China, 15, 23, 79, 157-158, 195, 198, 226, 291, 297, 379, 440 Banks, 99, 173, 230, 289, 291, 293, 315, 325, 328, 331, 335-337, 339-340, 343-344, 346, 352-354, 356-360, 362-363, 366 International Rivers: http://www.internationalrivers.org/blogs/246/the-global-cdm-hydro-hall-of-shame Ming sheng, 157 Bank credit creation, 173, 335, 339 Mughal India, 157 Bank reform, 354-365 Young, R., Cowe, A., Nunan, C., Harvey, J., & Mason, L.
    [Show full text]
  • Climate Curriculum Learning Outcomes NOV19.Indd
    CLIMATE What should young people know about 1 13 ACTION The Big Ideas: Climate Action by the time they leave school? Climate Curriculum Learning Outcomes KEY IDEAS SCIENTIFIC BACKGROUND By the end of Year 2: By the end of Year 4: By the end of Year 6: By the end of Year 9: By the end of Year 11: → Pupils understand that → Pupils understand that → Pupils can clearly → Students can clearly explain → Students can name a range of some human activity burning coal, oil and articulate the link the scientific consensus that greenhouse gases and describe in causes pollution in the gas has an impact on between burning human burning of fossil fuels is detail the processes that lead to air which is affecting the the climate and have a fossil fuels and the main and original cause of their increasing concentrations in world’s climate / making basic understanding of climate change using today’s climate change the atmosphere the world hotter the scientific processes appropriate scientific Students can describe Students know where uncertainties involved vocabulary → → → Pupils understand the processes that undermine or remain in climate science, e.g. how distinction between → Pupils are familiar with → Pupils can name key boost carbon sinks atmospheric water vapour will ‘weather’ and ‘climate’ the terms ‘atmosphere’, carbon sinks such as change; when tipping points may Students are aware that in ‘Climate Change’ forests, peatlands, → be reached; climate inertia; how Pupils know that the the public arena there are → and ‘greenhouse gas oceans, algal blooms,
    [Show full text]
  • Personal Carbon Trading: a Review of Research Evidence and Real-World Experience of a Radical Idea
    Energy and Emission Control Technologies Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Personal carbon trading: a review of research evidence and real-world experience of a radical idea Yael Parag1 Abstract: Personal carbon trading (PCT) is a radical and innovative mitigation approach for Tina Fawcett2 the residential and personal transport sectors. PCT is an umbrella term for various downstream cap-and-trade policies, all of which aim to limit carbon emissions within a society by engag- 1School of Sustainability, The Interdisciplinary Center, Herzliya, ing individuals in the process, and could cover more than 40% of national carbon emissions. Israel; 2Environmental Change This policy idea is unique because it provides an overarching approach to personal emissions Institute, Oxford University Centre for the Environment, Oxford, UK from energy use and because it combines a number of mechanisms to drive behavior change: economic, psychological, and social. This paper presents a review of research evidence and real-world experience of PCT. Most of the political interest, research, and experimentation with PCT has taken place in the UK. During 2006–2008, the UK government commissioned a number of studies on PCT, following high-level political interest. It concluded that public acceptability and the cost of the scheme were serious barriers to its introduction. However, a variety of other research work has subsequently demonstrated that public acceptability may not be such a barrier as feared. Nevertheless, there are a number of other barriers, including costs and technical challenges, some adverse distributional effects, and the low carbon capa- bilities of citizens.
    [Show full text]
  • Climate Crisis: Social Science Crisis
    Climate Crisis: Social Science Crisis [a chapter for Der Klimawandel: Sozialwissenschaftliche Perspektiven , VS-Verlag, forthcoming] Larry Lohmann The Corner House Introduction “Billions wasted on UN climate programme” (Vidal 2008). “European Union’s efforts to tackle climate change a failure” (Snow 2007). “Effort to curtail emissions in turmoil” (Ball 2008a). “. may slow the changes needed to cope with global warming” (Kanter 2007). “It isn’t working” (Vencat 2007). “Not effective” (Wheelan 2007). “A charade” (Wall Street Journal 2007). “Will such systems ever work?” (Kanter 2008). “Time to ditch Kyoto” (Prins and Rayner 2007). “Beware the carbon cowboys” (Harvey 2007). Such headlines may seem alarming. But they are becoming more and more commonplace, and reflect rising concern – even among many supporters of the Kyoto Protocol, the European Union Emissions Trading Scheme (EU ETS), and other flagship programmes to curb climate change – that, after 10 grueling years of seemingly earnest global efforts, things are not going according to plan. Whether or not current international climate agreements turn out in the end to be fixable, it is obvious that they have not worked so far in alleviating what US President George W. Bush refers to as the “addiction to fossil fuels” that is chiefly responsible for global warming. The headlines also point to serious gaps in the explanations most often offered for the failures of global climate policy. These explanations tend to stress a number of factors. Shorter-term political issues are said to be taking precedence over climate change. Fossil fuel-using lobbies are strong. The international legal regime is weak. Distrustful Southern governments are unlikely to buy into global solutions that appear to perpetuate colonialist inequalities (Roberts and Parks 2007).
    [Show full text]
  • Patterns for Navigating the Transition to a World in Energy Descent
    Patterns for Navigating the Transition to a World in Energy Descent Fourth International Integral Theory Conference Sonoma State University, July, 2015 By David D. MacLeod Affiliations: PatternDynamics Community of Practice, Accreditation: Level II (b); co-initiator of Transition Whatcom in Bellingham, WA.; and affiliated online with the Integral Permaculture Page | 1 and Integral Post-Metaphysical Spirituality communities. Contact: [email protected] Acknowledgments: For valuable feedback on drafts of this paper: Angela MacLeod, T. Collins Logan, Tim Winton, Garvin H. Boyle, Mary Odum, Alia Aurami, Kenyth Freeman, Tom Anderson, David Marshak, and Charles A.S. Hall. For general inspiration: Howard T. Odum, David Holmgren, Richard Heinberg, Rob Hopkins, Jean Gebser, Ken Wilber, Edgar Morin, Alfonso Montuori, Alan Seid, Chris Dierkes, and Trevor Malkinson; and all whom I’ve interacted with at Beams & Struts, Seattle Integral, Integral Permaculture and Integral Post-Metaphysical Spirituality communities and forums. Abstract: This paper will consider current concerns about resource depletion (“energy descent”) and the unsustainability of current economic structures, which may indicate we are entering a new era signaled by the end of growth. Using the systems thinking tool of PatternDynamics™, developed by Tim Winton, this paper seeks to integrate multiple natural patterns in order to effectively impact these pressing challenges. Some of the Patterns considered include Energy, Transformity, Power, Pulse, Growth, and the polarities of Expansion/Contraction and Order/Chaos. We tend to have horrible visions associated with downturns and "collapse." Can we even entertain the possibility that we might be entering a period of decline in energy and standard of living? Can we re-examine our assumptions about “growth” and “development”? Jean Gebser’s emphasis that every mutation of structure is preceded by a crisis will be considered, and Howard T.
    [Show full text]
  • Quarterly Economic Commentary
    RESEARCH SERIES NUMBER 4 OCTOBER 2008 BUDGET PERSPECTIVES 2009 Tim Callan (ed.) Ray Barrell, Alan Barrett, Noel Casserly, Frank Convery, Jean Goggin, Ide Kearney, Simon Kirby, Pete Lunn, Martin O’Brien, Lisa Ryan Copies of this paper may be obtained from The Economic and Social Research Institute (Limited Company No. 18269). Registered Office: Whitaker Square, Sir John Rogerson’s Quay, Dublin 2. www.esri.ie Price €15.00 (Special rate for students, €7.50) Tim Callan is Research Professor, Alan Barrett is Senior Research Officer, Ide Kearney is Research Associate, Pete Lunn is Post Doctoral Fellow, Martin O’Brien and Jean Goggin are Research Assistants at the Economic and Social Research Institute (ESRI). Ray Barrell is Senior Research Fellow, Simon Kirby is Research Fellow at the National Institute of Economic and Social Research (NIESR), London. Noel Casserly is Director, Comhar, Lisa Ryan is Director of Research, Comhar - the Sustainable Development Council. Frank Convery is Professor of Environmental Studies at University College Dublin. These papers have been accepted for publication by the Institute, which does not itself take institutional policy positions. Accordingly, the authors are solely responsible for the content and the views expressed. RESEARCH SERIES NUMBER 4 OCTOBER 2008 BUDGET PERSPECTIVES 2009 Tim Callan (ed.) Ray Barrell, Alan Barrett, Noel Casserly, Frank Convery, Jean Goggin, Ide Kearney, Simon Kirby, Pete Lunn, Martin O’Brien, Lisa Ryan © THE ECONOMIC AND SOCIAL RESEARCH INSTITUTE DUBLIN, 2008 ISBN 0 7070 0273 7 ACKNOWLEDGEMENTS Thanks are due to the referees and to research staff at the ESRI for comments which have helped to improve the papers included in this volume.
    [Show full text]
  • Bibliography
    Bibliography Abalofia, M., & Biggart, N. (1992). Competitive systems: A sociological view. In P. Ekins & M. Max-Neef (Eds.), Real-life economics. London: Routledge. Abel, T., & Stepp, J. R. (2003). A new ecosystems ecology for anthropology. Conservation Ecology, 7(3), 12. Abel, N., et al. (2006). Collapse and reorganization in social-ecological systems: Questions, some ideas, and policy implications. Ecology and Society, 11(1), 17. Ad-Hoc Working Group. (2010). Critical raw materials for the EU. Brussels: European Commission. Adamides, E. D., & Mouzakitis, Y. (2008). Industrial ecosystems as technological niches. Journal of Cleaner Production, 17, 172–180. Adamson, K. -A. (2009). Small stationary survey. Fuel Cell Today. Adamson, K.-A., & Callaghan, L. (2009). 2009 Niche Transport Survey.www.fuelcelltoday.com Adriaanse, A., et al. (1997). Resource flows. The material basis of industrial economies. Washington, DC: World Resource Institute. Agre, P., et al. (2011). The Stockholm memorandum. 3rd Nobel Laureate symposium on global sustainability, Stockholm. Aguilera Klink, F. (1992). Sobre la irrelevancia conceptual de la economía ambiental. Barcelona: III Jornadas de Economía Crítica. Aleklett, K. (2010). Peak coal in China. www.energybulletin.net/print/55011 Allenby, B. R. (1999). Industrial ecology: Policy framework and implementation. Upper Sadle River: Prentice Hall. Allenby, B. R. (2009). The industrial ecology of emerging technologies. Journal of Industrial Ecology, 13(2), 168–183. Allenby, B. R., & Rejeski, D. (2008). The industrial ecology of emerging technologies. Journal of Industrial Ecology, 12(3). Alterra, et al. (2007). Review of existing information on the interrelations between soil and climate change. Wageringen: Alterra, Wageringen UR. Altmann, M., et al. (2004). Potential for hydrogen as a fuel for transport in the long term (2020–2030).
    [Show full text]
  • The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures
    energies Review The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures Samuel Alexander * and Joshua Floyd Melbourne Sustainable Society Institute, University of Melbourne, Melbourne 3010, Australia; josh@joshfloyd.com * Correspondence: [email protected] Received: 14 July 2020; Accepted: 17 August 2020; Published: 19 August 2020 Abstract: This paper reviews and analyses a decarbonization policy called the Tradable Energy Quotas (TEQs) system developed by David Fleming. The TEQs system involves rationing fossil fuel energy use for a nation on the basis of either a contracting carbon emission budget or scarce fuel availability, or both simultaneously, distributing budgets equitably amongst energy-users. Entitlements can be traded to incentivize demand reduction and to maximize efficient use of the limited entitlements. We situate this analysis in the context of Joseph Tainter’s theory about the development and collapse of complex societies. Tainter argues that societies become more socio-politically and technologically ‘complex’ as they solve the problems they face and that such complexification drives increased energy use. For a society to sustain itself, therefore, it must secure the energy needed to solve the range of societal problems that emerge. However, what if, as a result of deep decarbonization, there is less energy available in the future not more? We argue that TEQs offers a practical means of managing energy descent futures. The policy can facilitate controlled reduction of socio-political complexity via processes of ‘voluntary simplification’ (the result being ‘degrowth’ or controlled contraction at the scale of the physical economy). Keywords: Tradable Energy Quotas (TEQs); deep decarbonization; renewable energy; post-carbon; carbon budget; epistemic humility; energy descent; Tainter; voluntary simplification; degrowth 1.
    [Show full text]