Atvirojo Kodo Programų Taikymas Rinkos Tyrimuose

Total Page:16

File Type:pdf, Size:1020Kb

Atvirojo Kodo Programų Taikymas Rinkos Tyrimuose MYKOLO ROMERIO UNIVERSITETAS Tatjana Bilevičienė, Steponas Jonušauskas ATVIROJO KODO PROGRAMŲ TAIKYMAS RINKOS TYRIMUOSE Vadovėlis Vilnius 2013 UDK 004.4:339.13(075.8) Bi238 Recenzavo: doc. dr. Eugenijus Telešius, Informacinių technologijų institutas prof. dr. Vitalija Rudzkienė, Mykolo Romerio universitetas Autorių indėlis: doc. dr. Steponas Jonušauskas – 4,2 autorinio lanko doc. dr. Tatjana Bilevičienė – 5,4 autorinio lanko Mykolo Romerio universiteto Socialinės informatikos fakulteto Informatikos ir programų sistemų katedros 2012 m. spalio 11 d. posėdyje (protokolo Nr. 1INFPSK-16) pritarta leidybai. Mykolo Romerio universiteto Mokslo programos „Socialinės technologijos“ komiteto 2012 m. lapkričio 5 d. posėdyje (protokolo Nr. MPK2-4) pritarta leidybai. Mykolo Romerio universiteto Socialinės informatikos fakulteto tarybos 2012 m. lapkri- čio 8 d. posėdyje (protokolo Nr. 10-55-(1.15 E-20701)) pritarta leidybai. Mykolo Romerio universiteto Mokslinių-mokomųjų leidinių aprobavimo leidybai komi- sijos 2012 m. lapkričio 14 d. posėdyje (protokolo Nr. 2L-38) pritarta leidybai. Visos knygos leidybos teisės saugomos. Ši knyga arba kuri nors jos dalis negali būti dauginama, taisoma arba kitu būdu platinama be leidėjo sutikimo. ISBN 978-9955-19-513-9 © Mykolo Romerio universitetas, 2013 Turinys PRATARMĖ ...................................................................................................................5 1. ATVIROJO KODO PROGRAMŲ TAIKYMAS ...................................................8 1.1. Atvirojo kodo programų ypatumai ....................................................................8 1.2. Statistikos programinių paketų apžvalga ........................................................ 18 1.3. Atvirojo kodo statistinio paketo pasirinkimas .............................................. 33 2. RINKOS TYRIMŲ ORGANIZAVIMAS .............................................................34 2.1. Rinkos tyrimų paskirtis ir reglamentavimas .................................................. 34 2.2. Statistinio tyrimo projektas .............................................................................. 37 2.3. Tyrimo tikslas ir tyrimo modelis ..................................................................... 38 2.3.1. Tyrimo problemos ir tikslo formulavimas .......................................... 38 2.3.2. Koncepcijų žemėlapis ............................................................................ 41 2.4. Kokybiniai ir kiekybiniai tyrimai. Tyrimo tipo pasirinkimas...................... 43 2.5. Anketinės apklausos metodas .......................................................................... 50 2.5.1. Kintamųjų tipai ir matavimo skalės pasirinkimas ............................. 52 2.5.2. Imties sudarymo būdas ir dydis ........................................................... 58 2.5.3. Anketos kodavimo schemos sudarymas. Duomenų kodavimas ..... 65 3. DUOMENŲ SUVEDIMAS Į KOMPIUTERĮ .....................................................69 3.1. Pspp programų paketo duomenų redaktorius ............................................... 69 3.2. Pspp duomenų bazės pildymas ........................................................................ 76 3.3. Duomenų įkėlimas iš kitų šaltinių................................................................... 89 4. PIRMINĖ STATISTINĖ DUOMENŲ ANALIZĖ ...............................................94 4.1. Duomenų keitimas ir atranka .......................................................................... 94 4.2. Duomenų atranka (filtravimas) ..................................................................... 105 4.3. PSPP paketo sintaksės redaktorius ................................................................ 110 4.4. Aprašomoji statistika ....................................................................................... 112 4.4.1. Vienmatė dažnių analizė ..................................................................... 118 4.4.2. Porinės dažnių lentelės ........................................................................ 121 4.4.3. Pagrindiniai grafikai: histogramos ir skritulinės diagramos .......... 125 4.4.4. Padėties ir sklaidos charakteristikos .................................................. 130 5. STATISTINĖS HIPOTEZĖS ................................................................................144 5.1. Imties skirstiniai. Įverčiai................................................................................ 144 5.2. Statistinių hipotezių tikrinimas ..................................................................... 145 6. RYŠIŲ ANALIZĖ ..................................................................................................156 6.1. Kintamųjų, išmatuotų nominalioje skalėje arba rangų skalėje su nedideliu kategorijų skaičiumi, statistiniai ryšiai ............................................... 156 6.1.1. Pirsono χ2 suderinamumo kriterijus.................................................. 156 6.1.2. Pirsono χ2 suderinamumo kriterijaus skaičiavimas (nominalūs kintamieji) .................................................................................. 159 6.1.3. Pirsono χ2 suderinamumo kriterijaus skaičiavimas (ranginiai kintamieji) ..................................................................................... 164 6.1.4. Kiti χ2 kriterijaus skaičiavimo būdai .................................................. 168 6.1.5. Nominaliųjų kintamųjų ryšio matai .................................................. 169 3 6.2. Koreliacinė analizė........................................................................................... 171 6.2.1. Pirsono koreliacijos koeficientas ........................................................ 174 6.2.2. Pirsono koreliacijos koeficiento skaičiavimas .................................. 175 6.2.3. Spirmeno (Spearman) koreliacijos koeficientas ............................... 180 6.2.4. Spirmeno koreliacijos koeficiento skaičiavimas ............................... 182 6.2.5. Kiti kokybinių kintamųjų ryšio matai ............................................... 185 6.2.6. Kiti tarpusavio ryšio matai .................................................................. 188 7. REGRESINĖ ANALIZĖ .......................................................................................198 7.1. Tiesinis (paprastas) regresijos modelis ......................................................... 198 7.2. Tiesinė regresinė analizė pspp ir spss terpėje .............................................. 201 7.3. Tiesinė regresinė analizė ms excel terpėje .................................................... 204 7.4. Daugialypės tiesinės regresijos modelis ........................................................ 208 7.5. Daugialypė tiesinė regresija PSPP ir SPSS terpėje ....................................... 209 7.6. Daugialypė tiesinė regresija MS EXCEL terpėje .......................................... 212 8. SKIRTUMŲ ANALIZĖ ........................................................................................215 8.1. Hipotezės apie vidurkių lygybę ...................................................................... 215 8.2. T kriterijus vienai imčiai ................................................................................. 216 8.2.1. T kriterijaus vienai imčiai skaičiavimas ............................................ 217 8.3. T kriterijus dviem nepriklausomoms imtims .............................................. 219 8.3.1. T kriterijaus dviem nepriklausomoms imtims skaičiavimas .......... 221 8.4. T kriterijaus dviem priklausomoms (porinėms) imtims skaičiavimas pspp ir spss terpėje.................................................................................................. 228 8.5. Dispersinė analizė ............................................................................................ 230 8.6. Vienfaktorinė dispersinė analizė PSPP ir SPSS terpėje .............................. 235 8.6.1. Kontrastų tikrinimas ........................................................................... 239 8.7. Skirtumų analizė MS EXCEL terpėje ............................................................ 242 8.7.1. Vienfaktorinė dispersinė analizė ........................................................ 242 8.7.2. T kriterijus dviem priklausomoms (porinėms) imtims .................. 244 8.7.3. T kriterijus dviem nepriklausomoms imtims ................................... 246 9. FAKTORINĖ ANALIZĖ ......................................................................................251 9.1. Faktorinė analizė PSPP ir SPSS terpėje ......................................................... 264 10. KLAUSIMINŲ PATIKIMUMO ANALIZĖ .....................................................274 10.1. Kronbacho ALFA skaičiavimas .................................................................... 276 10.2. Konkordancijos koeficiento skaičiavimas .................................................. 278 11. LOGISTINĖ REGRESIJA IR ROC ANALIZĖ .................................................280 11.1. Logistinė regresija .......................................................................................... 280 11.1.1. Logistinė regresija SPSS terpėje ....................................................... 281 11.2. Operatoriaus charakteringa kreivė .............................................................. 284 Literatūra ....................................................................................................................290 1 priedas. χ2 skirstinio α lygmens kritinės reikšmės ..................................................
Recommended publications
  • Introduction, Structure, and Advanced Programming Techniques
    APQE12-all Advanced Programming in Quantitative Economics Introduction, structure, and advanced programming techniques Charles S. Bos VU University Amsterdam [email protected] 20 { 24 August 2012, Aarhus, Denmark 1/260 APQE12-all Outline OutlineI Introduction Concepts: Data, variables, functions, actions Elements Install Example: Gauss elimination Getting started Why programming? Programming in theory Questions Blocks & names Input/output Intermezzo: Stack-loss Elements Droste 2/260 APQE12-all Outline OutlineII KISS Steps Flow Recap of main concepts Floating point numbers and rounding errors Efficiency System Algorithm Operators Loops Loops and conditionals Conditionals Memory Optimization 3/260 APQE12-all Outline Outline III Optimization pitfalls Maximize Standard deviations Standard deviations Restrictions MaxSQP Transforming parameters Fixing parameters Include packages Magic numbers Declaration files Alternative: Command line arguments OxDraw Speed 4/260 APQE12-all Outline OutlineIV Include packages SsfPack Input and output High frequency data Data selection OxDraw Speed C-Code Fortran Code 5/260 APQE12-all Outline Day 1 - Morning 9.30 Introduction I Target of course I Science, data, hypothesis, model, estimation I Bit of background I Concepts of I Data, Variables, Functions, Addresses I Programming by example I Gauss elimination I (Installation/getting started) 11.00 Tutorial: Do it yourself 12.30 Lunch 6/260 APQE12-all Introduction Target of course I Learn I structured I programming I and organisation I (in Ox or other language) Not: Just
    [Show full text]
  • Zanetti Chini E. “Forecaster's Utility and Forecasts Coherence”
    ISSN: 2281-1346 Department of Economics and Management DEM Working Paper Series Forecasters’ utility and forecast coherence Emilio Zanetti Chini (Università di Pavia) # 145 (01-18) Via San Felice, 5 I-27100 Pavia economiaweb.unipv.it Revised in: August 2018 Forecasters’ utility and forecast coherence Emilio Zanetti Chini∗ University of Pavia Department of Economics and Management Via San Felice 5 - 27100, Pavia (ITALY) e-mail: [email protected] FIRST VERSION: December, 2017 THIS VERSION: August, 2018 Abstract We introduce a new definition of probabilistic forecasts’ coherence based on the divergence between forecasters’ expected utility and their own models’ likelihood function. When the divergence is zero, this utility is said to be local. A new micro-founded forecasting environment, the “Scoring Structure”, where the forecast users interact with forecasters, allows econometricians to build a formal test for the null hypothesis of locality. The test behaves consistently with the requirements of the theoretical literature. The locality is fundamental to set dating algorithms for the assessment of the probability of recession in U.S. business cycle and central banks’ “fan” charts Keywords: Business Cycle, Fan Charts, Locality Testing, Smooth Transition Auto-Regressions, Predictive Density, Scoring Rules and Structures. JEL: C12, C22, C44, C53. ∗This paper was initiated when the author was visiting Ph.D. student at CREATES, the Center for Research in Econometric Analysis of Time Series (DNRF78), which is funded by the Danish National Research Foundation. The hospitality and the stimulating research environment provided by Niels Haldrup are gratefully acknowledged. The author is particularly grateful to Tommaso Proietti and Timo Teräsvirta for their supervision.
    [Show full text]
  • Primena Statistike U Kliničkim Istraţivanjima Sa Osvrtom Na Korišćenje Računarskih Programa
    UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET Dušica V. Gavrilović Primena statistike u kliničkim istraţivanjima sa osvrtom na korišćenje računarskih programa - Master rad - Mentor: prof. dr Vesna Jevremović Beograd, 2013. godine Zahvalnica Ovaj rad bi bilo veoma teško napisati da nisam imala stručnu podršku, kvalitetne sugestije i reviziju, pomoć prijatelja, razumevanje kolega i beskrajnu podršku porodice. To su razlozi zbog kojih želim da se zahvalim: . Mom mentoru, prof. dr Vesni Jevremović sa Matematičkog fakulteta Univerziteta u Beogradu, koja je bila ne samo idejni tvorac ovog rada već i dugogodišnja podrška u njegovoj realizaciji. Njena neverovatna upornost, razne sugestije, neiscrpni optimizam, profesionalizam i razumevanje, predstavljali su moj stalni izvor snage na ovom master-putu. Članu komisije, doc. dr Zorici Stanimirović sa Matematičkog fakulteta Univerziteta u Beogradu, na izuzetnoj ekspeditivnosti, stručnoj recenziji, razumevanju, strpljenju i brojnim korisnim savetima. Članu komisije, mr Marku Obradoviću sa Matematičkog fakulteta Univerziteta u Beogradu, na stručnoj i prijateljskoj podršci kao i spremnosti na saradnju. Dipl. mat. Radojki Pavlović, šefu studentske službe Matematičkog fakulteta Univerziteta u Beogradu, na upornosti, snalažljivosti i kreativnosti u pronalaženju raznih ideja, predloga i rešenja na putu realizacije ovog master rada. Dugogodišnje prijateljstvo sa njom oduvek beskrajno cenim i oduvek mi mnogo znači. Dipl. mat. Zorani Bizetić, načelniku Data Centra Instituta za onkologiju i radiologiju Srbije, na upornosti, idejama, detaljnoj reviziji, korisnim sugestijama i svakojakoj podršci. Čak i kada je neverovatno ili dosadno ili pametno uporna, mnogo je i dugo volim – skoro ceo moj život. Mast. biol. Jelici Novaković na strpljenju, reviziji, bezbrojnim korekcijama i tehničkoj podršci svake vrste. Hvala na osmehu, budnom oku u sitne sate, izvrsnoj hrani koja me je vraćala u život, nes-kafi sa penom i transfuziji energije kada sam bila na rezervi.
    [Show full text]
  • Econometrics Oxford University, 2017 1 / 34 Introduction
    Do attractive people get paid more? Felix Pretis (Oxford) Econometrics Oxford University, 2017 1 / 34 Introduction Econometrics: Computer Modelling Felix Pretis Programme for Economic Modelling Oxford Martin School, University of Oxford Lecture 1: Introduction to Econometric Software & Cross-Section Analysis Felix Pretis (Oxford) Econometrics Oxford University, 2017 2 / 34 Aim of this Course Aim: Introduce econometric modelling in practice Introduce OxMetrics/PcGive Software By the end of the course: Able to build econometric models Evaluate output and test theories Use OxMetrics/PcGive to load, graph, model, data Felix Pretis (Oxford) Econometrics Oxford University, 2017 3 / 34 Administration Textbooks: no single text book. Useful: Doornik, J.A. and Hendry, D.F. (2013). Empirical Econometric Modelling Using PcGive 14: Volume I, London: Timberlake Consultants Press. Included in OxMetrics installation – “Help” Hendry, D. F. (2015) Introductory Macro-econometrics: A New Approach. Freely available online: http: //www.timberlake.co.uk/macroeconometrics.html Lecture Notes & Lab Material online: http://www.felixpretis.org Problem Set: to be covered in tutorial Exam: Questions possible (Q4 and Q8 from past papers 2016 and 2017) Felix Pretis (Oxford) Econometrics Oxford University, 2017 4 / 34 Structure 1: Intro to Econometric Software & Cross-Section Regression 2: Micro-Econometrics: Limited Indep. Variable 3: Macro-Econometrics: Time Series Felix Pretis (Oxford) Econometrics Oxford University, 2017 5 / 34 Motivation Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible. Economic Theory likely wrong and incomplete meaningless without empirical support Econometrics to discover new relationships from data Econometrics can provide empirical support. or refutation. Require econometric software unless you really like doing matrix manipulation by hand.
    [Show full text]
  • Econometrics II Econ 8375 - 01 Fall 2018
    Econometrics II Econ 8375 - 01 Fall 2018 Course & Instructor: Instructor: Dr. Diego Escobari Office: BUSA 218D Phone: 956.665.3366 Email: [email protected] Web Page: http://faculty.utrgv.edu/diego.escobari/ Office Hours: MT 3:00 p.m. { 5:00 p.m., and by appointment Lecture Time: R 4:40 p.m. { 7:10 p.m. Lecture Venue: Weslaco Center for Innovation and Commercialization 2.206 Course Objective: The course objective is to provide students with the main methods of modern time series analysis. Emphasis will be placed on appreciating its scope, understanding the essentials un- derlying the various methods, and developing the ability to relate the methods to important issues. Through readings, lectures, written assignments and computer applications students are expected to become familiar with these techniques to read and understand applied sci- entific papers. At the end of this semester, students will be able to use computer based statistical packages to analyze time series data, will understand how to interpret the output and will be confident to carry out independent analysis. Prerequisites: Applied multivariate data analysis I and II (ISQM/QUMT 8310 and ISQM/QUMT 8311) Textbooks: Main Textbooks: (E) Walter Enders, Applied Econometric Time Series, John Wiley & Sons, Inc., 4th Edi- tion, 2015. ISBN-13: 978-1-118-80856-6. Econometrics II, page 1 of 9 Additional References: (H) James D. Hamilton, Time Series Analysis, Princeton University Press, 1994. ISBN-10: 0-691-04289-6 Classic reference for graduate time series econometrics. (D) Francis X. Diebold, Elements of Forecasting, South-Western Cengage Learning, 4th Edition, 2006.
    [Show full text]
  • Dell VITA RFP- Revised COTS Pricing 12-17-08
    COTS Software COTS Software is considered to be commercially available software read to run without customization, Gov't Pricing Academic Pricing Gov't Pricing Enter discount for publisher (This Enter discount for publisher (This will be the will be the lowest discount that you lowest discount that you will offer during the will offer during the term of the term of the contract) contract) COTS Discount % COTS Discount % Title Price Adobe 0.00% Adobe 0.00% Adobe Acrobat Professional Version 9 Windows 218.33 Autodesk 0.00% Autodesk 0.00% Adobe Photoshop CS4 Windows 635.24 Citrix 0.00% Citrix 0.00% Autodesk Sketchbook 2009 Pro 120 Corel 0.00% Corel 0.00% McAfee Active Virus Defense 14.87 DoubleTake 0.00% DoubleTake 0.00% Symantec Norton Antivirus 2009 25 Intuit 0.00% Intuit 0.00% Symantec Backup Exec 12.5 for Windows Servers 454.25 McAfee 0.00% McAfee 0.00% PRICE FOR ABOVE TITLES SHOULD BE Novell 0.00% Novell 0.00% QUOTED FOR PURCHASE OF ONE (1) COPY Nuance 0.00% Nuance 0.00% Quark Software 0.00% Quark Software 0.00% Quest Software 0.00% Quest Software 0.00% Riverdeep 0.00% Riverdeep 0.00% Academic Pricing Symantec 0.00% Symantec 0.00% Title Price Trend Micro 0.00% Trend Micro 0.00% Adobe Acrobat Professional Version 9 Windows 131.03 VMWare 0.00% VMWare 0.00% Adobe Photoshop CS4 Windows 276.43 WebSense 0.00% WebSense 0.00% Autodesk Sketchbook 2009 Pro 120 McAfee Active Virus Defense 14.87 Symantec Norton Antivirus 2009 25 Symantec Backup Exec 12.5 for Windows Servers 454.25 PRICE FOR ABOVE TITLES SHOULD BE QUOTED FOR PURCHASE OF ONE (1) COPY LICENSE AND MEDIA For purposes of evaluation VITA will create a market basket.
    [Show full text]
  • JASP: Graphical Statistical Software for Common Statistical Designs
    JSS Journal of Statistical Software January 2019, Volume 88, Issue 2. doi: 10.18637/jss.v088.i02 JASP: Graphical Statistical Software for Common Statistical Designs Jonathon Love Ravi Selker Maarten Marsman University of Newcastle University of Amsterdam University of Amsterdam Tahira Jamil Damian Dropmann Josine Verhagen University of Amsterdam University of Amsterdam University of Amsterdam Alexander Ly Quentin F. Gronau Martin Šmíra University of Amsterdam University of Amsterdam Masaryk University Sacha Epskamp Dora Matzke Anneliese Wild University of Amsterdam University of Amsterdam University of Amsterdam Patrick Knight Jeffrey N. Rouder Richard D. Morey University of Amsterdam University of California, Irvine Cardiff University University of Missouri Eric-Jan Wagenmakers University of Amsterdam Abstract This paper introduces JASP, a free graphical software package for basic statistical pro- cedures such as t tests, ANOVAs, linear regression models, and analyses of contingency tables. JASP is open-source and differentiates itself from existing open-source solutions in two ways. First, JASP provides several innovations in user interface design; specifically, results are provided immediately as the user makes changes to options, output is attrac- tive, minimalist, and designed around the principle of progressive disclosure, and analyses can be peer reviewed without requiring a “syntax”. Second, JASP provides some of the recent developments in Bayesian hypothesis testing and Bayesian parameter estimation. The ease with which these relatively complex Bayesian techniques are available in JASP encourages their broader adoption and furthers a more inclusive statistical reporting prac- tice. The JASP analyses are implemented in R and a series of R packages. Keywords: JASP, statistical software, Bayesian inference, graphical user interface, basic statis- tics.
    [Show full text]
  • An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs †
    axioms Article An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs † Kai Liu 1, YangQuan Chen 2,* and Xi Zhang 1 1 School of Mechanical Electronic & Information Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] (K.L.); [email protected] (X.Z.) 2 Mechatronics, Embedded Systems and Automation Lab, School of Engineering, University of California, Merced, CA 95343, USA * Correspondence: [email protected]; Tel.: +1-209-228-4672; Fax: +1-209-228-4047 † This paper is an extended version of our paper published in An evaluation of ARFIMA programs. In Proceedings of the International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; In Press. Academic Editors: Hans J. Haubold and Javier Fernandez Received: 13 March 2017; Accepted: 14 June 2017; Published: 17 June 2017 Abstract: Strong coupling between values at different times that exhibit properties of long range dependence, non-stationary, spiky signals cannot be processed by the conventional time series analysis. The autoregressive fractional integral moving average (ARFIMA) model, a fractional order signal processing technique, is the generalization of the conventional integer order models—autoregressive integral moving average (ARIMA) and autoregressive moving average (ARMA) model. Therefore, it has much wider applications since it could capture both short-range dependence and long range dependence. For now, several software programs have been developed to deal with ARFIMA processes. However, it is unfortunate to see that using different numerical tools for time series analysis usually gives quite different and sometimes radically different results.
    [Show full text]
  • Security Systems Services World Report
    Security Systems Services World Report established in 1974, and a brand since 1981. www.datagroup.org Security Systems Services World Report Database Ref: 56162 This database is updated monthly. Security Systems Services World Report SECURITY SYSTEMS SERVICES WORLD REPORT The Security systems services Report has the following information. The base report has 59 chapters, plus the Excel spreadsheets & Access databases specified. This research provides World Data on Security systems services. The report is available in several Editions and Parts and the contents and cost of each part is shown below. The Client can choose the Edition required; and subsequently any Parts that are required from the After-Sales Service. Contents Description ....................................................................................................................................... 5 REPORT EDITIONS ........................................................................................................................... 6 World Report ....................................................................................................................................... 6 Regional Report ................................................................................................................................... 6 Country Report .................................................................................................................................... 6 Town & Country Report ......................................................................................................................
    [Show full text]
  • Statistický Software
    Statistický software 1 Software AcaStat GAUSS MRDCL RATS StatsDirect ADaMSoft GAUSS NCSS RKWard[4] Statistix Analyse-it GenStat OpenEpi SalStat SYSTAT The ASReml GoldenHelix Origin SAS Unscrambler Oxprogramming Auguri gretl language SOCR UNISTAT BioStat JMP OxMetrics Stata VisualStat BrightStat MacAnova Origin Statgraphics Winpepi Dataplot Mathematica Partek STATISTICA WinSPC EasyReg Matlab Primer StatIt XLStat EpiInfo MedCalc PSPP StatPlus XploRe EViews modelQED R SPlus Excel Minitab R Commander[4] SPSS 2 Data miningovýsoftware n Cca 20 až30 dodavatelů n Hlavníhráči na trhu: n Clementine, IBM SPSS Modeler n IBM’s Intelligent Miner, (PASW Modeler) n SGI’sMineSet, n SAS’s Enterprise Miner. n Řada vestavěných produktů: n fraud detection: n electronic commerce applications, n health care, n customer relationship management 3 Software-SAS n : www.sas.com 4 SAS n Společnost SAS Institute n Vznik 1976 v univerzitním prostředí n Dnes:největšísoukromásoftwarováspolečnost na světě (více než11.000 zaměstnanců) n přes 45.000 instalací n cca 9 milionů uživatelů ve 118 zemích n v USA okolo 1.000 akademických zákazníků (SAS používávětšina vyšších a vysokých škol a výzkumných pracovišť) 5 SAS 6 SAS 7 SAS q Statistickáanalýza: Ø Popisnástatistika Ø Analýza kontingenčních (frekvenčních) tabulek Ø Regresní, korelační, kovariančníanalýza Ø Logistickáregrese Ø Analýza rozptylu Ø Testováníhypotéz Ø Diskriminačníanalýza Ø Shlukováanalýza Ø Analýza přežití Ø … 8 SAS q Analýza časových řad: Ø Regresnímodely Ø Modely se sezónními faktory Ø Autoregresnímodely Ø
    [Show full text]
  • Oxmetrics News MARCH 2010 ISSUE 10 NEW MODULES NEW RELEASES FAQS USERS VIEWS COURSES and SEMINARS
    www.oxmetrics.net www.timberlake.co.uk www.timberlake-consultancy.com OxMetrics news MARCH 2010 ISSUE 10 NEW MODULES NEW RELEASES FAQS USERS VIEWS COURSES AND SEMINARS TM • Text may contain unicode. Announcing OxMetrics 6.1 • When reading, sample period information is handled through the first Jurgen A. Doornik column. This must be a column of dates (integers formatted as a date), or strings of the form 2010(1), 2010M1, or 2010Q1, etc.. The release of OxMetrics 6.1 is timed to coincide with the 8th OxMetrics user conference, taking place in Washington, DC. This newsletter The following picture shows the usmacro09_m.in7 file saved by describes what is new in the OxMetrics front-end, G@RCH and STAMP. OxMetrics as usmacro09_m.xlsx and loaded in Excel: We also provide a list of papers that will be presented at the conference. Finally and with great sadness, we print an obituary of Ana Timberlake. Page 1. Announcing OxMetrics 6.1 1 2. New File Formats 1 2.1 Office Open XML 1 2.2 Stata Data Files 1 2.3 PDF Files 1 2.4 Other Changes 1 3. G@RCH 6.1 2 3.1 What’s New in G@RCH 6.1 2 3.2 MG@RCH Framework 2 4. STAMP 8.30 3 4.1 What’s New in STAMP 8.30 3 4.2 Generating Batch Code 4 4.3 Generating Ox Code 4 4.4 Creating a Link with SsfPack 5 5. Timberlake Consultants – Consultancy & Training 5 6. 8th OxMetrics User Conference, 5 OxMetrics only reads the first sheet from the workbook, but the Washington DC, USA.
    [Show full text]
  • Discoversim™ Version 2 Workbook
    DiscoverSim™ Version 2 Workbook Contact Information: Technical Support: 1-866-475-2124 (Toll Free in North America) or 1-416-236-5877 Sales: 1-888-SigmaXL (888-744-6295) E-mail: [email protected] Web: www.SigmaXL.com Published: December 2015 Copyright © 2011 - 2015, SigmaXL, Inc. Table of Contents DiscoverSim™ Feature List Summary, Installation Notes, System Requirements and Getting Help ..................................................................................................................................1 DiscoverSim™ Version 2 Feature List Summary ...................................................................... 3 Key Features (bold denotes new in Version 2): ................................................................. 3 Common Continuous Distributions: .................................................................................. 4 Advanced Continuous Distributions: ................................................................................. 4 Discrete Distributions: ....................................................................................................... 5 Stochastic Information Packet (SIP): .................................................................................. 5 What’s New in Version 2 .................................................................................................... 6 Installation Notes ............................................................................................................... 8 DiscoverSim™ System Requirements ..............................................................................
    [Show full text]