Primena Statistike U Kliničkim Istraţivanjima Sa Osvrtom Na Korišćenje Računarskih Programa

Total Page:16

File Type:pdf, Size:1020Kb

Primena Statistike U Kliničkim Istraţivanjima Sa Osvrtom Na Korišćenje Računarskih Programa UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET Dušica V. Gavrilović Primena statistike u kliničkim istraţivanjima sa osvrtom na korišćenje računarskih programa - Master rad - Mentor: prof. dr Vesna Jevremović Beograd, 2013. godine Zahvalnica Ovaj rad bi bilo veoma teško napisati da nisam imala stručnu podršku, kvalitetne sugestije i reviziju, pomoć prijatelja, razumevanje kolega i beskrajnu podršku porodice. To su razlozi zbog kojih želim da se zahvalim: . Mom mentoru, prof. dr Vesni Jevremović sa Matematičkog fakulteta Univerziteta u Beogradu, koja je bila ne samo idejni tvorac ovog rada već i dugogodišnja podrška u njegovoj realizaciji. Njena neverovatna upornost, razne sugestije, neiscrpni optimizam, profesionalizam i razumevanje, predstavljali su moj stalni izvor snage na ovom master-putu. Članu komisije, doc. dr Zorici Stanimirović sa Matematičkog fakulteta Univerziteta u Beogradu, na izuzetnoj ekspeditivnosti, stručnoj recenziji, razumevanju, strpljenju i brojnim korisnim savetima. Članu komisije, mr Marku Obradoviću sa Matematičkog fakulteta Univerziteta u Beogradu, na stručnoj i prijateljskoj podršci kao i spremnosti na saradnju. Dipl. mat. Radojki Pavlović, šefu studentske službe Matematičkog fakulteta Univerziteta u Beogradu, na upornosti, snalažljivosti i kreativnosti u pronalaženju raznih ideja, predloga i rešenja na putu realizacije ovog master rada. Dugogodišnje prijateljstvo sa njom oduvek beskrajno cenim i oduvek mi mnogo znači. Dipl. mat. Zorani Bizetić, načelniku Data Centra Instituta za onkologiju i radiologiju Srbije, na upornosti, idejama, detaljnoj reviziji, korisnim sugestijama i svakojakoj podršci. Čak i kada je neverovatno ili dosadno ili pametno uporna, mnogo je i dugo volim – skoro ceo moj život. Mast. biol. Jelici Novaković na strpljenju, reviziji, bezbrojnim korekcijama i tehničkoj podršci svake vrste. Hvala na osmehu, budnom oku u sitne sate, izvrsnoj hrani koja me je vraćala u život, nes-kafi sa penom i transfuziji energije kada sam bila na rezervi. Hvala joj što je tu i što je moja. Dipl. inž. građ. Draganu Gavriloviću, mom suprugu Gaši, na pomoći, sugestijama, strpljenju, smehu, podršci. On je uvek bio, jeste i biće moj životni oslonac i inspiracija, moje vrelo smeha i šale, moj najbolji prijatelj, moja snaga i moje drugo ja. Hvala mu što postoji i što je baš – moj. Dipl. mat. Milici Novaković, profesoru matematike u šidskoj gimnaziji “Sava Šumanović”, na stručnoj reviziji, strpljenju, beskrajnoj energiji i izdržljivosti. Njena jednostavnost, požrtvovanost, brižnost i toplina ali i dar za božanstvene kiflice i slatkiše, predstavljaju ono zbog čega se oseća srećno baš svako ko je poznaje. Hvala joj što je jednom davno postala moja. Mojim sinovima Nikiti i Borisu Gavrilović na upornom i dugotrajnom traženju grešaka u tekstu, na strpljenju i miru koji su imali dok sam pisala ovaj rad. Oni su moj život, sunce, srce i bogatstvo i taman kada pomislim da ih ne mogu voleti više, oni mi pruže novi razlog za još. Dragi dečaci, zahvaljujući vama, pojam “beskrajno” se neprestano uvećava i raste. Ivi Kežić, magistru biostatistike, na rečima i porukama punim podrške, energije i snage koje mi je slala iz daleka. Svojim ličnim primerom, bogatstvom i lepotom sopstvene duše, učinila je i mene jačom, boljom i kompletnijom. Hvala joj što je vrhunski biostatističar, što je humanista i borac, što postoji i što je moj najbolji ženski prijatelj koji me stalno menja i čini boljom. Ireni Ćosić, Dušku Stojanovskom i Dušanki Rapajić, mojim kolegama iz Data Centra Instituta za onkologiju i radiologiju Srbije koji su me u pisanju ovog rada podržavali osmehom, strpljenjem i razumevanjem, čak i kada je za sve to bilo prilično teško pronaći pristojan razlog. I na kraju Milici Petrović – Seki, mojoj mami, koja bi bila srećna i ponosna da je mogla da dočeka bar moje zvanje dipl. mat. Danas, uz ovu moju porodicu i ovo zvanje, znam da bi bila presrećna i preponosna. Ta moja tako malena a tako velika mama, imala je snage da svojom čistotom i ljubavlju izveze srećan početak jednog sićušnog ali časnog i srećnog mesta pod suncem - samo za mene. Večna joj slava i hvala za to, za ljubav i pažnju, za to što je bila baš - moja mama. Zahvaljujući ovim dragim ljudima, njihovoj podršci, pažnji, ljubavi i strpljenju, jedna ideja i jedna želja sada su postali stvarnost. Hvala vam. Dušica Gavrilović Apstrakt BIOSTATISTIKA I KLINIČKA ISTRAŢIVANJA – ČESTE GREŠKE Od ciljeva istraživanja, obima uzorka i kvaliteta podataka zavisi izbor statističkih metoda i njihova primena, što se kroz rezultate direktno odražava na ukupan kvalitet istraživanja. Zbog grešaka u bilo kojoj od ovih faza, veliki broj radova nikada ne bude objavljen. Cilj ovoga rada je bio da se ukaže na neke od uobičajenih grešaka, da bi se one izbegle ili minimizirale. Najčešće i najteže greške u kliničkim istraživanjima se prave u fazi njihovog planiranja (pogrešan dizajn studije; neprecizni/neadekvatni ciljevi; problem jedinke istraživanja; problem uzorka; problem predviđene statističke metodologije). U fazi prikupljanja podataka, najčešće greške su vezane za neprecizne merne skale, neusaglašenost jedinica mere i veliki broj nedostajućih podataka. Zbog neiskustva statističara, ali i zbog dostupnosti i jednostavnosti statističkih paketa koji daju slobodu nestatističarima za samostalnu statističku analizu bez dovoljnog predznanja, u fazi statističke obrade podataka najčešće greške nastaju usled pogrešnog izbora statističke metodologije, njenog nerazumevanja ili zbog neproveravanja ispunjenosti uslova za njenu primenu (mešanje zavisnih/nezavisnih podataka i/ili parametarskih/neparametarskih klasa testova). U fazi tumačenja rezultata statističke analize, greške nastaju najčešće usled nedovoljnog poznavanja statističke metodologije ili neadekvatne statističke analize (nehomogenost komparativnih grupa; pristrasnost; zbunjujući faktor; preterana stratifikacija i inflacija greške I vrste). Ovim nisu iscrpljene sve greške u kliničkim istraživanjima. Neke od njih nastaju usled nedovoljnog razumevanja suštine pojmova u statistici (p-value; 95% CI; Relative Ratio; ODDS Ratio; Hazard Ratio), dela njene metodologije (Survival analyses: DFI vs. DFS vs. TTP; censored data) ili karakteristika i ciljeva različitih tipova kliničkih studija (end-points-a). Pored edukacije statističara za poslove biostatističara i popularizovanja uloge biostatističara u kliničkim istraživanjima počev od faze njegovog planiranja, treba podizati i nivo znanja, svesti i odgovornosti istraživača, a posebno nestatističara koji samostalno obavljaju statistički analizu. Ovakav stav predstavlja dobru osnovu za izbegavanje ili minimiziranje grešaka a samimi tim i podizanje ukupnog kvaliteta istraživanja. Ključne reči: statistika i medicinska istraživanja; česte greške u statističkoj analizi Abstract BIOSTATISTICS & CLINICAL RESEARCH - COMMON MISCONCEPTIONS The quality of scientific research largely depends on formulating feasible study objectives, sample size, quality of collected data and the choice of the analysis methods. Errors in any of those largely compromise the quality of the research in such a way that many of the scientific papers never get published. The objective of this paper is to highlight some of the most common errors and misconceptions so that they can be avoided or their impact can be minimized. The most common mistakes in clinical research are made in the planning stage (unsuitable design, objectives of the research not carefully and clearly stated, research population choice, non-optimal sample size, non-adequate choice of statistical methods). During the data collection errors such as using measurement scales that are not precise enough, collecting data from various non-reliable sources and not preventing the loss of information which leads to missing data can have hudge consequences on the quality of the research. Due to wide availability of user-friendly statstical software, non-statisticians, but also non-experienced statisticians often use non-suitable statistical methods to analyze the data. This usually arises from either non-understanding the statistical science behind the methods and using them without checking the conditions under which they can be used (confusing paired and non-paired data parametric and non parametric tests). Poor understanding of statistical methods along with neglecting important statistical aspects (homogeneity of treatment groups, different kind of biases, confounding factors, non-correcting for multiplicity testing) lead into erroneous interpreatation of the researchy findings. These are not the only pitfalls into which reasearches can fall while performing the statistical analysis. Some of them can arise due to misunderstanding of basic staistical concepts such as p-value, 95%CI, risk ratio, odds ratio, hazard ratio, but also due to non-careful definitions of primary research variables (DFI, DFS, TTP etc.) The importance of the role of a biostatistician in all the phases of clinical research, specially in the planning phase, must be clear to the research scientists. Research scientist should be aware of all the consequences if research is not carefully planned or executed in accordance with the statistical aspects of providing reliable results. Professional statisticians should be educated also in the field of biostatistics, while non-statisticians working on the statistical analysis need guidance from biostatisticians with knowledge or experience. Key words: statistics and medical research; common errors in statistical analysis Sadrţaj: 1 UVOD ...........................................................................................................................
Recommended publications
  • Date Created Size MB . تماس بگیر ید 09353344788
    Name Software ( Search List Ctrl+F ) Date created Size MB برای سفارش هر یک از نرم افزارها با شماره 09123125449 - 09353344788 تماس بگ ریید . \1\ Simulia Abaqus 6.6.3 2013-06-10 435.07 Files: 1 Size: 456,200,192 Bytes (435.07 MB) \2\ Simulia Abaqus 6.7 EF 2013-06-10 1451.76 Files: 1 Size: 1,522,278,400 Bytes (1451.76 MB) \3\ Simulia Abaqus 6.7.1 2013-06-10 584.92 Files: 1 Size: 613,330,944 Bytes (584.92 MB) \4\ Simulia Abaqus 6.8.1 2013-06-10 3732.38 Files: 1 Size: 3,913,689,088 Bytes (3732.38 MB) \5\ Simulia Abaqus 6.9 EF1 2017-09-28 3411.59 Files: 1 Size: 3,577,307,136 Bytes (3411.59 MB) \6\ Simulia Abaqus 6.9 2013-06-10 2462.25 Simulia Abaqus Doc 6.9 2013-06-10 1853.34 Files: 2 Size: 4,525,230,080 Bytes (4315.60 MB) \7\ Simulia Abaqus 6.9.3 DVD 1 2013-06-11 2463.45 Simulia Abaqus 6.9.3 DVD 2 2013-06-11 1852.51 Files: 2 Size: 4,525,611,008 Bytes (4315.96 MB) \8\ Simulia Abaqus 6.10.1 With Documation 2017-09-28 3310.64 Files: 1 Size: 3,471,454,208 Bytes (3310.64 MB) \9\ Simulia Abaqus 6.10.1.5 2013-06-13 2197.95 Files: 1 Size: 2,304,712,704 Bytes (2197.95 MB) \10\ Simulia Abaqus 6.11 32BIT 2013-06-18 1162.57 Files: 1 Size: 1,219,045,376 Bytes (1162.57 MB) \11\ Simulia Abaqus 6.11 For CATIA V5-6R2012 2013-06-09 759.02 Files: 1 Size: 795,893,760 Bytes (759.02 MB) \12\ Simulia Abaqus 6.11.1 PR3 32-64BIT 2013-06-10 3514.38 Files: 1 Size: 3,685,099,520 Bytes (3514.38 MB) \13\ Simulia Abaqus 6.11.3 2013-06-09 3529.41 Files: 1 Size: 3,700,856,832 Bytes (3529.41 MB) \14\ Simulia Abaqus 6.12.1 2013-06-10 3166.30 Files: 1 Size: 3,320,102,912 Bytes
    [Show full text]
  • Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat
    remote sensing Article Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat Iman Tahmasbian 1,* , Natalie K. Morgan 2, Shahla Hosseini Bai 3, Mark W. Dunlop 1 and Amy F. Moss 2 1 Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia; Scopus affiliation ID: 60028929; [email protected] 2 School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; [email protected] (N.K.M.); [email protected] (A.F.M.) 3 Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; s.hosseini-bai@griffith.edu.au * Correspondence: [email protected] Abstract: Hyperspectral imaging (HSI) is an emerging rapid and non-destructive technology that has promising application within feed mills and processing plants in poultry and other intensive animal industries. HSI may be advantageous over near infrared spectroscopy (NIRS) as it scans entire samples, which enables compositional gradients and sample heterogenicity to be visualised and analysed. This study was a preliminary investigation to compare the performance of HSI with that of NIRS for quality measurements of ground samples of Australian wheat and to identify the most important spectral regions for predicting carbon (C) and nitrogen (N) concentrations. In total, 69 samples were scanned using an NIRS (400–2500 nm), and two HSI cameras operated in Citation: Tahmasbian, I.; Morgan, 400–1000 nm (VNIR) and 1000–2500 nm (SWIR) spectral regions. Partial least square regression N.K; Hosseini Bai, S.; Dunlop, M.W; (PLSR) models were used to correlate C and N concentrations of 63 calibration samples with their Moss, A.F Comparison of spectral reflectance, with 6 additional samples used for testing the models.
    [Show full text]
  • Overview-Of-Statistical-Analytics-And
    Brief Overview of Statistical Analytics and Machine Learning tools for Data Scientists Tom Breur 17 January 2017 It is often said that Excel is the most commonly used analytics tool, and that is hard to argue with: it has a Billion users worldwide. Although not everybody thinks of Excel as a Data Science tool, it certainly is often used for “data discovery”, and can be used for many other tasks, too. There are two “old school” tools, SPSS and SAS, that were founded in 1968 and 1976 respectively. These products have been the hallmark of statistics. Both had early offerings of data mining suites (Clementine, now called IBM SPSS Modeler, and SAS Enterprise Miner) and both are still used widely in Data Science, today. They have evolved from a command line only interface, to more user-friendly graphic user interfaces. What they also share in common is that in the core SPSS and SAS are really COBOL dialects and are therefore characterized by row- based processing. That doesn’t make them inherently good or bad, but it is principally different from set-based operations that many other tools offer nowadays. Similar in functionality to the traditional leaders SAS and SPSS have been JMP and Statistica. Both remarkably user-friendly tools with broad data mining and machine learning capabilities. JMP is, and always has been, a fully owned daughter company of SAS, and only came to the fore when hardware became more powerful. Its initial “handicap” of storing all data in RAM was once a severe limitation, but since computers now have large enough internal memory for most data sets, its computational power and intuitive GUI hold their own.
    [Show full text]
  • Construction of a Neuro-Immune-Cognitive Pathway-Phenotype Underpinning the Phenome Of
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 October 2019 doi:10.20944/preprints201910.0239.v1 Construction of a neuro-immune-cognitive pathway-phenotype underpinning the phenome of deficit schizophrenia. Hussein Kadhem Al-Hakeima, Abbas F. Almullab, Arafat Hussein Al-Dujailic, Michael Maes d,e,f. a Department of Chemistry, College of Science, University of Kufa, Iraq. E-mail: [email protected]. b Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq. E-mail: [email protected]. c Senior Clinical Psychiatrist, Faculty of Medicine, Kufa University. E-mail: [email protected]. d* Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; e Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; f IMPACT Strategic Research Centre, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia. Corresponding author Prof. Dr. Michael Maes, M.D., Ph.D. Department of Psychiatry Faculty of Medicine Chulalongkorn University Bangkok Thailand 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 October 2019 doi:10.20944/preprints201910.0239.v1 https://scholar.google.co.th/citations?user=1wzMZ7UAAAAJ&hl=th&oi=ao [email protected]. 2 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 October 2019 doi:10.20944/preprints201910.0239.v1 Abstract In schizophrenia, pathway-genotypes may be constructed by combining interrelated immune biomarkers with changes in specific neurocognitive functions that represent aberrations in brain neuronal circuits. These constructs provide insight on the phenome of schizophrenia and show how pathway-phenotypes mediate the effects of genome X environmentome interactions on the symptomatology/phenomenology of schizophrenia.
    [Show full text]
  • Predicting Plant Species Richness and Vegetation Patterns in Cultural Landscapes Using Disturbance Parameters
    Agriculture, Ecosystems and Environment 122 (2007) 446–452 www.elsevier.com/locate/agee Predicting plant species richness and vegetation patterns in cultural landscapes using disturbance parameters C. Buhk a,*, V. Retzer b, C. Beierkuhnlein b, A. Jentsch a a Disturbance Ecology and Vegetation Dynamics, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany and Bayreuth University, 95440 Bayreuth, Germany b Biogeography, University of Bayreuth, Universita¨tsstr. 30, 95440 Bayreuth, Germany Received 1 August 2006; received in revised form 22 February 2007; accepted 27 February 2007 Available online 24 April 2007 Abstract A new methodological framework for plant diversity assessment at the landscape scale is presented that exhibits the following strengths: (1) potential for easily standardizable sampling procedure; (2) characterization of disturbance regime; (3) use of selected disturbance descriptors as explanatory variables which probably allow for better transferability than site specific land use types—for example, to evaluate the emerging use of energy plants that pose novel management challenges without historic precedence to many landscapes; (4) analysis of quantitative and qualitative aspects of plant species diversity (alpha and beta diversity). For data analysis, a powerful regression method (PLS- R) was applied. On this basis, after further validation and transferability tests, a practical tool for the development and validation of effective agri-environmental programmes may be developed. # 2007 Elsevier B.V. All rights reserved. Keywords: Agri-environmental programmes; Alpha diversity; Beta diversity; Fichtelgebirge; Land use; Disturbance; Pattern analysis 1. Introduction paid per ha of arable land or grassland managed, and are no longer subsidized according to the quantity of certain goods The EU Sustainable Development Strategy, launched by produced or land use activity maintained.
    [Show full text]
  • GPL Reference Guide for IBM SPSS Statistics
    GPL Reference Guide for IBM SPSS Statistics Note Before using this information and the product it supports, read the information in “Notices” on page 415. Product Information This edition applies to version 162261647161, release 0, modification 0 of IBM SPSS Modeler BatchIBM SPSS ModelerIBM SPSS Modeler ServerIBM SPSS StatisticsIBM SPSS Statistics ServerIBM SPSS AmosIBM SPSS SmartreaderIBM SPSS Statistics Base Integrated Student EditionIBM SPSS Collaboration and Deployment ServicesIBM SPSS Visualization DesignerIBM SPSS Modeler Text AnalyticsIBM SPSS Text Analytics for Surveys IBM Analytical Decision ManagementIBM SPSS Modeler Social Network AnalysisIBM SPSS Analytic Server and to all subsequent releases and modifications until otherwise indicated in new editions. Contents Chapter 1. Introduction to GPL .....1 color.hue Function (For GPL Guides) .....90 The Basics ...............1 color.saturation Function (For GPL Graphic GPL Syntax Rules.............3 Elements) ..............90 GPL Concepts ..............3 color.saturation Function (For GPL Guides) . 91 Brief Overview of GPL Algebra .......3 csvSource Function ...........92 How Coordinates and the GPL Algebra Interact . 6 dataMaximum Function .........92 Common Tasks .............14 dataMinimum Function .........93 How to Add Stacking to a Graph ......14 delta Function ............93 How to Add Faceting (Paneling) to a Graph . 15 density.beta Function ..........93 How to Add Clustering to a Graph .....17 density.chiSquare Function ........96 How to Use Aesthetics .........18 density.exponential
    [Show full text]
  • Used.Html#Sbm Mv
    http://www.kdnuggets.com/2015/05/poll-analytics-data-mining-data-science-software- used.html#sbm_mv Vote in KDnuggets 16th Annual Poll: What Analytics, Data Mining, Data Science software/tools you used in the past 12 months for a real project?. We will clean and analyze the results and publish our trend analysis afterward What Analytics, Data Mining, Data Science software/tools you used in the past 12 months for a real project (not just evaluation)? 4 categories: Platforms, Languages, Deep Learning, Hadoop. Analytics / Data Mining Platforms / Suites: Actian Alpine Data Labs Alteryx Angoss Amazon Machine Learning Ayasdi BayesiaLab BigML Birst C4.5/C5.0/See5 Datameer Dataiku Dato (former Graphlab) Dell (including Statistica) FICO Model Builder Gnu Octave GoodData H2O (0xdata) IBM Cognos IBM SPSS Modeler IBM SPSS Statistics IBM Watson Analytics JMP KNIME Lavastorm Lexalytics MATLAB Mathematica Megaputer Polyanalyst/TextAnalyst MetaMind Microsoft Azure ML Microsoft SQL Server Microsoft Power BI MicroStrategy Miner3D Ontotext Oracle Data Miner Orange Pentaho Predixion Software QlikView RapidInsight/Veera RapidMiner Rattle Revolution Analytics (now part of Microsoft) SAP (including former KXEN) SAS Enterprise Miner Salford SPM/CART/Random Forests/MARS/TreeNet scikit-learn Skytree SiSense Splunk/ Hunk Stata TIBCO Spotfire Tableau Vowpal Wabbit Weka WordStat XLSTAT for Excel Zementis Other free analytics/data mining tools Other paid analytics/data mining/data science software Languages / low-level tools: C/C++ Clojure Excel F# Java Julia Lisp Perl Python R Ruby SAS base SQL Scala Unix shell/awk/gawk WPS: World Programming System Other programming languages Deep Learning tools Caffe Cuda-convnet Deeplearning4j Torch Theano Pylearn2 Other Deep Learning tools Hadoop-based Analytics-related tools Hadoop HBase Hive Pig Spark Mahout MLlib SQL on Hadoop tools Other Hadoop/HDFS-based tools.
    [Show full text]
  • Dell VITA RFP- Revised COTS Pricing 12-17-08
    COTS Software COTS Software is considered to be commercially available software read to run without customization, Gov't Pricing Academic Pricing Gov't Pricing Enter discount for publisher (This Enter discount for publisher (This will be the will be the lowest discount that you lowest discount that you will offer during the will offer during the term of the term of the contract) contract) COTS Discount % COTS Discount % Title Price Adobe 0.00% Adobe 0.00% Adobe Acrobat Professional Version 9 Windows 218.33 Autodesk 0.00% Autodesk 0.00% Adobe Photoshop CS4 Windows 635.24 Citrix 0.00% Citrix 0.00% Autodesk Sketchbook 2009 Pro 120 Corel 0.00% Corel 0.00% McAfee Active Virus Defense 14.87 DoubleTake 0.00% DoubleTake 0.00% Symantec Norton Antivirus 2009 25 Intuit 0.00% Intuit 0.00% Symantec Backup Exec 12.5 for Windows Servers 454.25 McAfee 0.00% McAfee 0.00% PRICE FOR ABOVE TITLES SHOULD BE Novell 0.00% Novell 0.00% QUOTED FOR PURCHASE OF ONE (1) COPY Nuance 0.00% Nuance 0.00% Quark Software 0.00% Quark Software 0.00% Quest Software 0.00% Quest Software 0.00% Riverdeep 0.00% Riverdeep 0.00% Academic Pricing Symantec 0.00% Symantec 0.00% Title Price Trend Micro 0.00% Trend Micro 0.00% Adobe Acrobat Professional Version 9 Windows 131.03 VMWare 0.00% VMWare 0.00% Adobe Photoshop CS4 Windows 276.43 WebSense 0.00% WebSense 0.00% Autodesk Sketchbook 2009 Pro 120 McAfee Active Virus Defense 14.87 Symantec Norton Antivirus 2009 25 Symantec Backup Exec 12.5 for Windows Servers 454.25 PRICE FOR ABOVE TITLES SHOULD BE QUOTED FOR PURCHASE OF ONE (1) COPY LICENSE AND MEDIA For purposes of evaluation VITA will create a market basket.
    [Show full text]
  • Use of Pyrolysis Mass Spectrometry with Supervised Learning for The
    Use of Pyrolysis Mass Spectrom etry with Supervised Learning for the Assessm ent of the Adulteration of Milk of Different Species ROYSTON GOODACRE Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, SY23 3DA, U.K. Binary m ixtures of 0± 20% cows’ m ilk with ewes’ m ilk, 0± 20% raphy;3,4 (2) electrophoretic methods including gel elec- cows’ m ilk with goats’ m ilk, and 0± 5% cow s’ m ilk with goats’ m ilk trophoresis 5,6 and isoelectric focusing;7,8 and (3) immu- were subjected to pyrolysis m ass spectrom etry (PyMS). For an alysis nological-based methods such as agar-gel immunodiffu- of the pyrolysis m ass sp ectra so as to determ ine the p ercentage sion,8± 10 immunoelectrophore sis,11 immunodotti ng,12 adulteration of either caprine or ovine m ilk w ith bovine m ilk, par- 13 tial least-sq uares regression (PLS), p rincipal com ponents regression haemagglutination, and various methods based on the 14± 16 (PCR) and fully intercon nected feed-forward ar ti® cial neural net- enzyme-linked immunosorbent assay (ELISA). works (ANNs) were studied. In the latter case, the w eights were Pyrolysis mass spectrometry (PyMS) is a rapid, auto- m odi® ed by u sing the stan dard b ack-prop agation algor ith m , and mated, instrument-based technique that permits the ac- the nodes u sed a sigm oidal squ ash ing function. It was fou nd that quisition of spectroscopic data from 300 or more samples each of the m ethods could be u sed to provid e calibration m odels per working day.
    [Show full text]
  • IBM SPSS Modeler Data Sheet
    IBM Analytics IBM SPSS Modeler Data sheet IBM SPSS Modeler Accelerate time to value with visual data science and machine learning Overview Highlights In a business environment, the main objective of analytics is to improve a business outcome. These outcomes can include: • Exploit the power of visual and programmatic data science with IBM® SPSS® Modeler for IBM Data • Acquiring and retaining customers Science Experience, or get started with • Driving operational efficiency a subscription standalone deployment • Minimizing and mitigating fraud of IBM SPSS Modeler • Optimizing hiring processes and reducing attrition • Harness the value and find patterns in more data sources including text, flat • Creating new business models files, databases, data warehouses and Hadoop distributions in a multi-cloud When you apply data science and machine learning to improve a environment decision, the result is likely to be a better outcome. • Put 40+ out-of-box machine learning algorithms to work for ease of model development and management Data science is the process of using analytical techniques to uncover patterns in data and applying the results for business value. Descriptive • Integrate with Apache Spark for fast in-memory computing analysis, predictive modeling, text analytics, geospatial analytics, entity • Optimize productivity of data science analytics, decision management and optimization are used to identify and business teams with programmatic, patterns and deploy predictive models into operational systems. visual and other skills Systems and people can use these patterns and models to derive insights • Speed data analysis with in-database that enable them to consistently make the right decision at the point of performance and minimized data impact.
    [Show full text]
  • IMPROVEMENT of MS BASED E-NOSE PERFORMANCES by INCORPORATION of CHROMATOGRAPHIC RETENTION TIME AS a NEW DATA DIMENSION Cosmin Burian
    IMPROVEMENT OF MS BASED E-NOSE PERFORMANCES BY INCORPORATION OF CHROMATOGRAPHIC RETENTION TIME AS A NEW DATA DIMENSION Cosmin Burian ISBN: 978-84-694-0293-1 Dipòsit Legal: T-202-2011 ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos.
    [Show full text]
  • Statistický Software
    Statistický software 1 Software AcaStat GAUSS MRDCL RATS StatsDirect ADaMSoft GAUSS NCSS RKWard[4] Statistix Analyse-it GenStat OpenEpi SalStat SYSTAT The ASReml GoldenHelix Origin SAS Unscrambler Oxprogramming Auguri gretl language SOCR UNISTAT BioStat JMP OxMetrics Stata VisualStat BrightStat MacAnova Origin Statgraphics Winpepi Dataplot Mathematica Partek STATISTICA WinSPC EasyReg Matlab Primer StatIt XLStat EpiInfo MedCalc PSPP StatPlus XploRe EViews modelQED R SPlus Excel Minitab R Commander[4] SPSS 2 Data miningovýsoftware n Cca 20 až30 dodavatelů n Hlavníhráči na trhu: n Clementine, IBM SPSS Modeler n IBM’s Intelligent Miner, (PASW Modeler) n SGI’sMineSet, n SAS’s Enterprise Miner. n Řada vestavěných produktů: n fraud detection: n electronic commerce applications, n health care, n customer relationship management 3 Software-SAS n : www.sas.com 4 SAS n Společnost SAS Institute n Vznik 1976 v univerzitním prostředí n Dnes:největšísoukromásoftwarováspolečnost na světě (více než11.000 zaměstnanců) n přes 45.000 instalací n cca 9 milionů uživatelů ve 118 zemích n v USA okolo 1.000 akademických zákazníků (SAS používávětšina vyšších a vysokých škol a výzkumných pracovišť) 5 SAS 6 SAS 7 SAS q Statistickáanalýza: Ø Popisnástatistika Ø Analýza kontingenčních (frekvenčních) tabulek Ø Regresní, korelační, kovariančníanalýza Ø Logistickáregrese Ø Analýza rozptylu Ø Testováníhypotéz Ø Diskriminačníanalýza Ø Shlukováanalýza Ø Analýza přežití Ø … 8 SAS q Analýza časových řad: Ø Regresnímodely Ø Modely se sezónními faktory Ø Autoregresnímodely Ø
    [Show full text]