Introducing Visual Basic 2005 and the .NET Platform ■CHAPTER 1 the Philosophy of .NET

Total Page:16

File Type:pdf, Size:1020Kb

Introducing Visual Basic 2005 and the .NET Platform ■CHAPTER 1 the Philosophy of .NET 5785ch00FM.qxd 3/31/06 3:31 PM Page i Pro VB 2005 and the .NET 2.0 Platform Second Edition Andrew Troelsen 5785ch00FM.qxd 3/31/06 3:31 PM Page ii Pro VB 2005 and the .NET 2.0 Platform Copyright © 2006 by Andrew Troelsen All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13 (pbk): 978-1-59059-578-7 ISBN-10 (pbk): 1-59059-578-5 Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Lead Editor: Ewan Buckingham Technical Reviewer: Don Reamey Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick, Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Kier Thomas, Matt Wade Production Director and Project Manager: Grace Wong Copy Edit Manager: Nicole LeClerc Senior Copy Editor: Ami Knox Assistant Production Director: Kari Brooks-Copony Production Editor: Kelly Winquist Compositor and Artist: Kinetic Publishing Services, LLC Proofreaders: April Eddy, Lori Bring, Nancy Sixsmith Indexer: Broccoli Information Management Cover Designer: Kurt Krames Manufacturing Director: Tom Debolski Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail [email protected], or visit http://www.springeronline.com. For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail [email protected], or visit http://www.apress.com. The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work. The source code for this book is available to readers at http://www.apress.com in the Source Code section. You will need to answer questions pertaining to this book in order to successfully download the code. 5785ch00FM.qxd 3/31/06 3:31 PM Page iii To my wife Mandy. Thank you babes for supporting me in yet another book. I love you. 5785ch00FM.qxd 3/31/06 3:31 PM Page iv 5785ch00FM.qxd 3/31/06 3:31 PM Page v Contents at a Glance About the Author . xxxiii About the Technical Reviewer. xxxv Acknowledgments . xxxvii Introduction . xxxix PART 1 ■ ■ ■ Introducing Visual Basic 2005 and the .NET Platform ■CHAPTER 1 The Philosophy of .NET . 3 ■CHAPTER 2 Building Visual Basic 2005 Applications . 31 PART 2 ■ ■ ■ Visual Basic 2005 Language Fundamentals ■CHAPTER 3 VB 2005 Programming Constructs, Part I . 65 ■CHAPTER 4 VB 2005 Programming Constructs, Part II. 103 PART 3 ■ ■ ■ Core Object-Oriented Programming Techniques ■CHAPTER 5 Defining Encapsulated Class Types. 127 ■CHAPTER 6 Understanding Inheritance and Polymorphism . 167 ■CHAPTER 7 Understanding Structured Exception Handling . 201 ■CHAPTER 8 Understanding Object Lifetime . 225 PART 4 ■ ■ ■ Advanced Object-Oriented Programming Techniques ■CHAPTER 9 Working with Interfaces and Collections . 245 ■CHAPTER 10 Callback Interfaces, Delegates, and Events . 281 ■CHAPTER 11 Advanced VB 2005 Programming Constructs. 309 ■CHAPTER 12 Understanding Generics and Nullable Data Types . 337 v 5785ch00FM.qxd 3/31/06 3:31 PM Page vi PART 5 ■ ■ ■ Programming with .NET Assemblies ■CHAPTER 13 Introducing .NET Assemblies. 363 ■CHAPTER 14 Type Reflection, Late Binding, and Attribute-based Programming. 407 ■CHAPTER 15 Processes, AppDomains, Contexts, and CLR Hosts. 441 ■CHAPTER 16 Building Multithreaded Applications . 463 ■CHAPTER 17 COM and .NET Interoperability . 493 PART 6 ■ ■ ■ Exploring the .NET Base Class Libraries ■CHAPTER 18 The System.IO Namespace . 527 ■CHAPTER 19 Understanding Object Serialization. 555 ■CHAPTER 20 The .NET Remoting Layer. 573 ■CHAPTER 21 Building a Better Window with System.Windows.Forms . 611 ■CHAPTER 22 Rendering Graphical Data with GDI+ . 655 ■CHAPTER 23 Programming with Windows Forms Controls . 707 ■CHAPTER 24 Database Access with ADO.NET . 767 PART 7 ■ ■ ■ Web Applications and XML Web Services ■CHAPTER 25 Building ASP.NET 2.0 Web Pages . 837 ■CHAPTER 26 ASP.NET 2.0 Web Controls, Themes, and Master Pages . 883 ■CHAPTER 27 ASP.NET 2.0 State Management Techniques . 919 ■CHAPTER 28 Understanding XML Web Services. 955 ■INDEX . 991 vi 5785ch00FM.qxd 3/31/06 3:31 PM Page vii Contents About the Author . xxxiii About the Technical Reviewer. xxxv Acknowledgments . xxxvii Introduction . xxxix PART 1 ■ ■ ■ Introducing Visual Basic 2005 and the .NET Platform ■CHAPTER 1 The Philosophy of .NET . 3 Understanding the Previous State of Affairs . 3 Life As a C/Win32 API Programmer . 3 Life As a C++/MFC Programmer . 4 Life As a Visual Basic 6.0 Programmer . 4 Life As a Java/J2EE Programmer. 4 Life As a COM Programmer . 5 Life As a Windows DNA Programmer. 5 The .NET Solution. 6 Introducing the Building Blocks of the .NET Platform (the CLR, CTS, and CLS) . 6 The Role of the Base Class Libraries . 7 What Visual Basic 2005 Brings to the Table . 7 Additional .NET-Aware Programming Languages. 8 Life in a Multilanguage World . 9 An Overview of .NET Assemblies . 10 Single-File and Multifile Assemblies . 11 The Role of the Common Intermediate Language . 12 Benefits of CIL . 14 Compiling CIL to Platform-Specific Instructions . 14 The Role of .NET Type Metadata . 14 The Role of the Assembly Manifest . 15 Understanding the Common Type System. 16 CTS Class Types . 16 CTS Structure Types . 16 CTS Interface Types. 17 CTS Enumeration Types . 17 vii 5785ch00FM.qxd 3/31/06 3:31 PM Page viii viii ■CONTENTS CTS Delegate Types. 17 CTS Type Members . 18 Intrinsic CTS Data Types . 18 Understanding the Common Language Specification . 19 Ensuring CLS Compliance . 20 Understanding the Common Language Runtime . 20 The Assembly/Namespace/Type Distinction . 22 Accessing a Namespace Programmatically . ..

  1083
Recommended publications
  • IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002
    © November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002 .Net Surbhi Bhardwaj Dronacharya College of Engineering Khentawas, Haryana INTRODUCTION as smartphones. Additionally, .NET Micro .NET Framework (pronounced dot net) is Framework is targeted at severely resource- a software framework developed by Microsoft that constrained devices. runs primarily on Microsoft Windows. It includes a large class library known as Framework Class Library (FCL) and provides language WHAT IS THE .NET FRAMEWORK? interoperability(each language can use code written The .NET Framework is a new and revolutionary in other languages) across several programming platform created by Microsoft for languages. Programs written for .NET Framework developingapplications. execute in a software environment (as contrasted to hardware environment), known as Common It is a platform for application developers. Language Runtime (CLR), an application virtual It is a Framework that supports Multiple machine that provides services such as Language and Cross language integration. security, memory management, and exception handling. FCL and CLR together constitute .NET IT has IDE (Integrated Development Framework. Environment). FCL provides user interface, data access, database Framework is a set of utilities or can say connectivity, cryptography, web building blocks of your application system. application development, numeric algorithms, .NET Framework provides GUI in a GUI and network communications. Programmers manner. produce software by combining their own source code with .NET Framework and other libraries. .NET is a platform independent but with .NET Framework is intended to be used by most new help of Mono Compilation System (MCS). applications created for the Windows platform. MCS is a middle level interface. Microsoft also produces an integrated development .NET Framework provides interoperability environment largely for .NET software called Visual between languages i.e.
    [Show full text]
  • MIC5161 Win 2003 Launch V6
    Microsoft Windows Server 2003 and Microsoft Visual Studio .NET 2003 Launch Guide Do more with less. 1 Contents Introduction 2 Introducing Microsoft® Windows® Server 2003 4 Windows Server 2003 Case Studies 10 Introducing Microsoft® Visual Studio® .NET 2003 26 Visual Studio .NET 2003 Case Studies 41 Australian .NET Connected Partners 47 Microsoft® SQL Server™ 52 Microsoft Exchange Server 53 Windows Server 2003 and Visual Studio .NET 2003 Launch Sponsors 55 Platform Partner 56 Platinum Sponsors 61 Gold Sponsors 81 Silver Sponsors 96 Australian Windows Server 2003 JDP 100 Microsoft Gold Certified Partners 102 2 3 Welcome to the launch of Windows Server 2003! This is an exciting time for In my ten or more years in the Australian developer community, the combination Microsoft, our partners and customers, as this is unquestionably the most of Microsoft Windows Server 2003 and Microsoft Visual Studio® .NET 2003 is customer-focused Windows Server release yet. The reality of today’s IT environment the most exciting launch I have ever been involved with. Last February, Microsoft is the demand to do more with technology and, at the same time, do it with reset the bar for innovation and productivity with a new development paradigm for less cost. Over the last two years, we have spent time with customers using building Web Services and applications – Visual Studio .NET. This year, we build Microsoft® Windows® 2000 Server and Windows NT® Server 4.0 to really on that momentum by offering an entire development platform for the building understand what it would take to enable them do a lot more with Windows Server and execution of those applications.
    [Show full text]
  • NET Framework
    Advanced Windows Programming .NET Framework based on: A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress J. Richter, Applied .NET Frameworks Programming, 2002, MS Press D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1 Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 2 Contents The most important features of .NET Assemblies Metadata Common Type System Common Intermediate Language Common Language Runtime Deploying .NET Runtime Garbage Collection Serialization Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 3 .NET Benefits In comparison with previous Microsoft’s technologies: Consistent programming model – common OO programming model Simplified programming model – no error codes, GUIDs, IUnknown, etc. Run once, run always – no "DLL hell" Simplified deployment – easy to use installation projects Wide platform reach Programming language integration Simplified code reuse Automatic memory management (garbage collection) Type-safe verification Rich debugging support – CLR debugging, language independent Consistent method failure paradigm – exceptions Security – code access security Interoperability – using existing COM components, calling Win32 functions Krzysztof
    [Show full text]
  • Perses: Syntax-Guided Program Reduction
    Perses: Syntax-Guided Program Reduction Chengnian Sun Yuanbo Li Qirun Zhang University of California University of California University of California Davis, CA, USA Davis, CA, USA Davis, CA, USA [email protected] [email protected] [email protected] Tianxiao Gu Zhendong Su University of California University of California Davis, CA, USA Davis, CA, USA [email protected] [email protected] ABSTRACT KEYWORDS Given a program P that exhibits a certain property ψ (e.g., a C program reduction, delta debugging, debugging program that crashes GCC when it is being compiled), the goal ACM Reference Format: of program reduction is to minimize P to a smaller variant P 0 that 0 Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong still exhibits the same property, i.e., ψ ¹P º. Program reduction is Su. 2018. Perses: Syntax-Guided Program Reduction. In ICSE ’18: ICSE ’18: important and widely demanded for testing and debugging. For 40th International Conference on Software Engineering , May 27-June 3, 2018, example, all compiler/interpreter development projects need effec- Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/ tive program reduction to minimize failure-inducing test programs 10.1145/3180155.3180236 to ease debugging. However, state-of-the-art program reduction techniques — notably Delta Debugging (DD), Hierarchical Delta 1 INTRODUCTION Debugging (HDD), and C-Reduce — do not perform well in terms of Program reduction is important and widely used. Given a program speed (reduction time) and quality (size of reduced programs), or are P that exhibits a property, the objective of program reduction is to highly customized for certain languages and thus lack generality.
    [Show full text]
  • Programming with Windows Forms
    A P P E N D I X A ■ ■ ■ Programming with Windows Forms Since the release of the .NET platform (circa 2001), the base class libraries have included a particular API named Windows Forms, represented primarily by the System.Windows.Forms.dll assembly. The Windows Forms toolkit provides the types necessary to build desktop graphical user interfaces (GUIs), create custom controls, manage resources (e.g., string tables and icons), and perform other desktop- centric programming tasks. In addition, a separate API named GDI+ (represented by the System.Drawing.dll assembly) provides additional types that allow programmers to generate 2D graphics, interact with networked printers, and manipulate image data. The Windows Forms (and GDI+) APIs remain alive and well within the .NET 4.0 platform, and they will exist within the base class library for quite some time (arguably forever). However, Microsoft has shipped a brand new GUI toolkit called Windows Presentation Foundation (WPF) since the release of .NET 3.0. As you saw in Chapters 27-31, WPF provides a massive amount of horsepower that you can use to build bleeding-edge user interfaces, and it has become the preferred desktop API for today’s .NET graphical user interfaces. The point of this appendix, however, is to provide a tour of the traditional Windows Forms API. One reason it is helpful to understand the original programming model: you can find many existing Windows Forms applications out there that will need to be maintained for some time to come. Also, many desktop GUIs simply might not require the horsepower offered by WPF.
    [Show full text]
  • Diploma Thesis
    Faculty of Computer Science Chair for Real Time Systems Diploma Thesis Porting DotGNU to Embedded Linux Author: Alexander Stein Supervisor: Jun.-Prof. Dr.-Ing. Robert Baumgartl Dipl.-Ing. Ronald Sieber Date of Submission: May 15, 2008 Alexander Stein Porting DotGNU to Embedded Linux Diploma Thesis, Chemnitz University of Technology, 2008 Abstract Programming PLC systems is limited by the provided libraries. In contrary, hardware-near programming needs bigger eorts in e. g. initializing the hardware. This work oers a foundation to combine advantages of both development sides. Therefore, Portable.NET from the DotGNU project has been used, which is an im- plementation of CLI, better known as .NET. The target system is the PLCcore- 5484 microcontroller board, developed by SYS TEC electronic GmbH. Built upon the porting, two variants to use interrupt routines withing the Portabe.NET runtime environment have been analyzed. Finally, the reaction times to occuring interrupt events have been examined and compared. Die Programmierung für SPS-Systeme ist durch die gegebenen Bibliotheken beschränkt, während hardwarenahe Programmierung einen gröÿeren Aufwand durch z.B. Initialisierungen hat. Diese Arbeit bietet eine Grundlage, um die Vorteile bei- der Entwicklungsseiten zu kombinieren. Dafür wurde Portable.NET des DotGNU- Projekts, eine Implementierung des CLI, bekannter unter dem Namen .NET, be- nutzt. Das Zielsystem ist das PLCcore-5484 Mikrocontrollerboard der SYS TEC electronic GmbH. Aufbauend auf der Portierung wurden zwei Varianten zur Ein- bindung von Interrupt-Routinen in die Portable.NET Laufzeitumgebung untersucht. Abschlieÿend wurden die Reaktionszeiten zu eintretenden Interrupts analysiert und verglichen. Acknowledgements I would like to thank some persons who had inuence and supported me in my work.
    [Show full text]
  • Outils De Développement Pour .NET Framework
    Outils de développement pour .NET Framework 8QGHU&RQVWUXFWLRQ (Q&RQVWUXFWLRQ Didier Donsez 8QLYHUVLWp-RVHSK)RXULHU *UHQREOH ,0$,0$*/65$'(/( 'LGLHU'RQVH]#LPDJIU 'LGLHU'RQVH]#LHHHRUJ Didier Donsez, 2003, Outils de développement pour 1 .NET 2 Petit rappel sur .NET et C# I .NET • Développement Multi langage • C#, C++, Java Script, Eiffel, Component Pascal, APL, Cobol, Oberon, Perl, Python, Scheme, Smalltalk, Standard ML, Haskell, Mercury, Oberon et Java/J++ • CIL (Common Intermediate Language) • CTS (Common Type System) 7 • CLI (Common Language Infrastructure) ( 1 U X R • CLR (CLI Runtime implémenté par MicroSoft) S W Q H • JIT, pré-JIT (à l’installation, ou développement) P H S S R O I H C# : le langage « Post-Java » Y p G H G • « Syncrétisation » de Java et de C++ V O L W X 2 I Standardisation ECMA (European Computer Manufacturers Association) · http://www.ecma.ch ] H V Q • ECMA-334 CLI (Format COFF, CTS, Metadata, …) R ' U H L G • ECMA-335 C# L ' 3 1RQ0LFUR6RIW .NET I Motivations • .NET sur des OS non Windows (Unix, Linux, MacOS X, …) • Implémentations libres • Outils libres I Project 7 ( 1 U • ROTOR (MicroSoft) sauf Linux (Shared Sources) X R S W Q H • Mono project (Ximian) P H S S R O H Y • DotGNU (Free Software Foundation) p G H G V O L W X 2 ] H V Q R ' U H L G L ' 4 Implémentations I MicroSoft · Commerciales · .NET CLR · Compact .NET CLR • Code partagé • « Rotor » : Shared Source CLI 7 ( 1 U 3.6 Mloc ( 10,721 fichiers) X R S W Q H KWWSPVGQPLFURVRIWFRPQHWVVFOL P H S S R • GC moins performant, JIT différent
    [Show full text]
  • Comparative Studies of Six Programming Languages
    Comparative Studies of Six Programming Languages Zakaria Alomari Oualid El Halimi Kaushik Sivaprasad Chitrang Pandit Concordia University Concordia University Concordia University Concordia University Montreal, Canada Montreal, Canada Montreal, Canada Montreal, Canada [email protected] [email protected] [email protected] [email protected] Abstract Comparison of programming languages is a common topic of discussion among software engineers. Multiple programming languages are designed, specified, and implemented every year in order to keep up with the changing programming paradigms, hardware evolution, etc. In this paper we present a comparative study between six programming languages: C++, PHP, C#, Java, Python, VB ; These languages are compared under the characteristics of reusability, reliability, portability, availability of compilers and tools, readability, efficiency, familiarity and expressiveness. 1. Introduction: Programming languages are fascinating and interesting field of study. Computer scientists tend to create new programming language. Thousand different languages have been created in the last few years. Some languages enjoy wide popularity and others introduce new features. Each language has its advantages and drawbacks. The present work provides a comparison of various properties, paradigms, and features used by a couple of popular programming languages: C++, PHP, C#, Java, Python, VB. With these variety of languages and their widespread use, software designer and programmers should to be aware
    [Show full text]
  • J2EE and .Net Security
    J2EE and .Net security 1. Introduction 1.1. Document Revision History Author Document Last Modified Note Version Date Ger Mulcahy 1.2 12/02/2002 Third draft Ger Mulcahy 1.1 01/02/2002 Added information on JAAS, JSSE, Project Liberty, DotGNU, etc. Ger Mulcahy 1.0 21/01/2002 Second Draft – added contributors Ger Mulcahy 0.1 04/01/2002 First draft 1.1.1. Contributors My thanks to the following for their assistance with this article: Alan Danziger, Mark Curphey, Alan Faber, Elias Levy, Tony Northrup 1.2. Overview A number of general comparative articles have been written discussing the pros and cons of these two competing technological platforms. The intention of this paper is to discuss J2EE and .Net at a high level from a security perspective, examining the tools and methodologies the platforms use to provide secure development and deployment environments. This introduction section covers a brief, incomplete discussion of key features of both platforms. It will not discuss areas that are not analogous between platforms. For more information on both, see the references section of this document. Note that .Net is a product platform, whereas J2EE is a standard specification, which is implemented to varying degrees of fidelity by a number of vendors. For this reason, direct comparisons may be difficult in certain areas without going into vendor specifics. For the purposes of this article no real distinction is made between .Net and the .Net Framework, which forms one part of the .Net strategy. While Microsoft is pushing .Net as their strategy for Web Services, this document will not discuss the two platforms from the point of view of Web Services, nor does it describe COM+, as this is not part of the .Net Framework.
    [Show full text]
  • Reiter István
    Reiter István C# 2009, 0.91 verzió 2 Tartalomjegyzék 1. Bevezet ő…………………………………………………………………………….......8 1.1. A jegyzet jelölései…………………………………………………………………8 1.2. Jogi feltételek………………………………………………………………………8 2. Microsoft .NET Framework…………………………………………………………...9 2.1. A .NET platform…………………………………………………………………….9 2.1.1. MSIL/CIL……………………………………………………………………...9 2.1.2. Fordítás/futtatás…………………………………………………………….9 2.1.3. BCL. …………………………………………………………………………10 2.2. A C# programozási nyelv……………………………………………………….10 2.3. Alternatív megoldások…………………………………………………………10 2.3.1. SSCLI………………………………………………………………………10 2.3.2. Mono…………………………………………………………………………10 2.3.3. DotGNU……………………………………………………………………..10 3. Fejleszt ői környezetek………………………………………………………………..12 3.1. Microsoft Visual Studio…………………………………………………………12 3.2. SharpDevelop…………………………………………………………………….13 3.3. MonoDevelop……………………………………………………………………..14 4. “Hello C#!”……………………………………………………………………………..16 4.1. A C# szintaktikája………………………………………………………………..17 4.1.1. Kulcsszavak……………………………………………………………….17 4.1.2. Megjegyzések……………………………………………………………..18 4.2. Névterek…………………………………………………………………………...18 5. Változók………………………………………………………………………………...20 5.1. Típusok…………………………………………………………………………….20 5.2. Lokális változók………………………………………………………………….21 5.3. Referencia- és értéktípusok……………………………………………………21 5.4. Boxing és Unboxing…………………………………………………………….22 5.5. Konstansok……………………………………………………………………….23 5.6. A felsorolt típus…………………………………………………………………..23 5.7. Null típusok………………………………………………………………………..24 6. Operátorok……………………………………………………………………………..25 6.1.
    [Show full text]
  • Unsupervised Translation of Programming Languages
    Unsupervised Translation of Programming Languages Marie-Anne Lachaux∗ Baptiste Roziere* Lowik Chanussot Facebook AI Research Facebook AI Research Facebook AI Research [email protected] Paris-Dauphine University [email protected] [email protected] Guillaume Lample Facebook AI Research [email protected] Abstract A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is time- consuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outper- form their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of paral- lel data in this domain. In this paper, we propose to leverage recent approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train our model on source code from open source GitHub projects, and show that it can translate functions between C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, requires no expertise in the source or target languages, and can easily be generalized to other programming languages.
    [Show full text]
  • The A-Z of Programming Languages (Interviews with Programming Language Creators)
    The A-Z of Programming Languages (interviews with programming language creators) Computerworld, 2008-20101 Ada: S. Tucker Taft ...................................................... 1 Arduino: Tom Igoe ...................................................... 5 ASP: Microsoft .......................................................... 9 AWK: Alfred Aho ....................................................... 11 AWK & AMPL: Brian Kernighan ....................................... 15 Bash: Chet Ramey....................................................... 17 C#: Anders Hejlsberg.................................................... 20 C++: Bjarne Stroustrup ................................................. 27 Clojure: Rich Hickey .................................................... 35 ColdFusion: Jeremy Allaire .............................................. 38 D: Walter Bright ......................................................... 41 Erlang: Joe Armstrong................................................... 44 F#: Don Syme .......................................................... 48 Falcon: Giancarlo Niccolai ............................................... 51 Forth: Charles Moore .................................................... 59 Groovy: Guillaume Laforge .............................................. 61 Haskell: Simon Peyton-Jones............................................. 65 INTERCAL: Don Wood................................................. 76 JavaScript: Brendan Eich................................................ 79 Lua: Roberto Ierusalimschy..............................................
    [Show full text]