Fourth Edition M E T H O D S I N M O L E C U L a R B I O Lo G Y
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pharmacological and Therapeutic Importance of Eucalyptus Species Grown in Iraq
IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 7, Issue 3 Version.1 (March 2017), PP. 72-91 The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Iraq Abstract:- Eucalyptus species grown in Iraq were included Eucalyptus bicolor (Syn: Eucalyptus largiflorens), Eucalyptus griffithsii, Eucalyptus camaldulensis (Syn: Eucalyptus rostrata) Eucalyptus incrassate, Eucalyptus torquata and Eucalyptus microtheca (Syn: Eucalyptus coolabahs). Eucalypts contained volatile oils which occurred in many parts of the plant, depending on the species, but in the leaves that oils were most plentiful. The main constituent of the volatile oil derived from fresh leaves of Eucalyptus species was 1,8-cineole. The reported content of 1,8-cineole varies for 54-95%. The most common constituents co-occurring with 1,8- cineole were limonene, α-terpineol, monoterpenes, sesquiterpenes, globulol and α , β and ϒ-eudesmol, and aromatic constituents. The pharmacological studies revealed that Eucalypts possessed gastrointestinal, antiinflammatory, analgesic, antidiabetic, antioxidant, anticancer, antimicrobial, antiparasitic, insecticidal, repellent, oral and dental, dermatological, nasal and many other effects. The current review highlights the chemical constituents and pharmacological and therapeutic activities of Eucalyptus species grown in Iraq. Keywords: Eucalyptus species, constituents, pharmacological, therapeutic I. INTRODUCTION: In the last few decades there has been an exponential growth in the field of herbal medicine. It is getting popularized in developing and developed countries owing to its natural origin and lesser side effects. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [1-50]. -
Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001). -
Nuclear DNA Contents of Phalaenopsis Sp. and Doritis Pulcherrima
J. AMER. SOC. HORT. SCI. 126(2):195–199. 2001. Nuclear DNA Contents of Phalaenopsis sp. and Doritis pulcherrima Sandy Lin and Hsiao-Ching Lee Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China Wen-Huei Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Chi-Chang Chen and Yen-Yu Kao Department of Botany, National Taiwan University, Taipei, 10764, Taiwan, Republic of China Yan-Ming Fu and Yao-Huang Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Tsai-Yun Lin1 Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China ADDITIONAL INDEX WORDS. Orchidaceae, endoreduplication, flow cytometry, genome size ABSTRACT. Nuclear DNA contents were estimated by flow cytometry in 18 Phalaenopsis Blume species and Doritis pulcherrima Lindl. DNA amounts differed 6.07-fold, from 2.74 pg/diploid nuclear DNA content (2C) in P. sanderiana Rchb.f. to 16.61 pg/2C in P. parishii Rchb.f. Nuclear DNA contents of P. aphrodite Rchb.f. clones, W01-38 (2n = 2x = 38), W01-41 (2n = 3x = 57), and W01-22 (2n = 4x = 76), displayed a linear relationship with their chromosome numbers, indicating the accuracy of flow cytometry. Our results also suggest that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes. The comparative analyses of DNA contents may provide information to molecular geneticists and systematists for genome analysis in Phalaenopsis. Endoreduplication was found in various tissues of P. equestris at different levels. The highest degree of endoreduplication in P. -
World Journal of Pharmaceutical Research Senthamil Selvan Et Al
World Journal of Pharmaceutical Research Senthamil Selvan et al. World Journal of Pharmaceutical Research SJIF Impact Factor 5.990 Volume 4, Issue 7, 1960-1967. Research Article ISSN 2277– 7105 ANALYSIS OF PHYTOCHEMICAL COMPONENT AND NUTRIENTS COMPONENT IN ETHANOL EXTRACTED OLDENLANDIA CORYMBOSA P. Senthamil Selvan*1, Dr.S.Vellavan2, P.Sagunthala3, N.Prakash4, Dr.Shyama Subramanian5. 1Research Scholar of PG and Research Department of Biochemistry, Maruthupandiyar College, Thanjavur, Tamilndu, India. 2Research Advisors and Associate Professor of PG and Research Department of Biochemistry, Maruthupandiyar College, Thanjavur, Tamilndu, India. 3Research Scholar of PG and Research Department of Biochemistry, University of Madras, Chennai, Tamilndu, India. 4Department of Chemistry and Bioscience, Srinivasa Ramanujan Centre, Shanmugha Arts and Science, Technology and Research Academy, Kumbakonam, Tamilndu,India. 5Associate Professor of PG and Research Department of Biochemistry, University of Madras, Chennai, Tamilndu, India. ABSTRACT Article Received on 10 May 2015, The medicinal plants have been used for treatment of illnesses and Revised on 05 June 2015, diseases. Plants that possess therapeutic properties or exert beneficial Accepted on 28 June 2015 pharmacological effects on the human body are designated as medicinal plants. Medicinal plants naturally synthesized *Correspondence for and accumulate some secondary metabolites like alkaloids, sterols, Author terpenes, flavonoids, saponin, glycosides, cyanogenics, tannins, resins, P. Senthamil Selvan Research Scholar of PG lactones, quinines, volatile oils etc. The use of traditional medicine is and Research Department widespread and plant still present a large source of natural antioxidants of Biochemistry, that might serve as least for the development of novel drugs for the Maruthupandiyar College, treatment of stress induced disorders such as migraine. -
Review Article a Comprehensive Review of Rubia Cordifolia Linn
Pharmacognosy Reviews Vol 2, Issue 3, Jan-Jun, 2008 PHCOG REV. An official Publication of Phcog.Net Phcog Rev.: Review Article A Comprehensive Review of Rubia cordifolia Linn. Nilambari Deshkar *, Shrikant Tilloo, Vipinchandra Pande Gurunanak College of Pharmacy, Khasra No.81/1, Mauza Nari, Behind C.P. Foundry, Near Dixit Nagar, Kamptee Road, Nagpur 440026, Maharashtra (INDIA). Corresponding author: 0712-6595623, Fax: +91 7122633851 ABSTRACT Rubia cordifolia Linn. ( manjishtha ) is popularly known as ‘Indian Madder’. Roots are traditionally used as anti-inflammatory, astringent, tonic, antiseptic, deobstruent, antidysenteric, blood purifier. It is an important ingredient of many ayurvedic preparations. The roots are natural red dye and are very effective in purifying blood. Various chemical constituents like anthraquinones, iridoid glycoside, naphthoic acid esters, bicyclic hexapeptides, and triterpenes have been isolated and identified from Rubia cordifolia Linn. The present review article is focused on phytochemical, pharmacological and other important aspects of manjishtha. KEYWORDS - Rubia cordifolia Linn, manjishtha , Rubiaceae, Indian Madder, anthraquinones INTRODUCTION Plants play a vital role in maintaining human health and in moist temperate and tropical forests, up to an altitude of contribute towards improvement of human life. They are 3500 m. (1), (2). It is a large genus of hardy climbers, with important components of medicines, cosmetics, dyes, perennial root stocks distributed in the temperate and beverages etc. In the present time focus on plant research tropical zones. About 15 species occur in India. Some of these has increased all over the globe enormously. There are are Indian Madder ( Rubia cordifolia Linn.), Naga Madder thousands of plant species having good potential of offering (Rubia sikkimensis Kurz), and European Madder ( Rubia direct therapeutic effect individually or in combinations. -
A Review on Phytochemical and Pharmacological Profile of Hedyotis Corymbosa Linn
Int. J. Pharm. Sci. Rev. Res., 26(1), May – Jun 2014; Article No. 54, Pages: 320-324 ISSN 0976 – 044X Review Article A Review on Phytochemical and Pharmacological Profile of Hedyotis corymbosa Linn Sridevi Sangeetha Kothandaraman Sivapraksam*1, Kavitha Karunakaran1, Umamaheswari Subburaya1, Sujatha Kuppusamy1, Subashini TS2 1Faculty of Pharmacy, Sri Ramachandra University, porur, Chennai, Tamil Nadu, India. 2Department of pharmacology, SRM Dental college, Ramapuram, Chennai, Tamil Nadu, India. *Corresponding author’s E-mail: [email protected] Accepted on: 07-04-2014; Finalized on: 30-04-2014. ABSTRACT Hedyotis Corymbosa (Linn.) Lam (Rubiaceae), also known as Diamond flower occupies an important place in the history of Indian system of medicine. It is frequently found throughout India, Sri Lanka, Tropical East Asia to Java and Philippines. It is extensively used for treating viral infection, cancer, acne, hepatitis, eye diseases, skin aliments and bleeding. This plant is used to clear toxins and heat, thereby activate blood circulation and promote diuresis. It exhibits antibacterial, antioxidant, analgesic, hepatoprotective, anticancer and other activities. This present study depicts an overview on chemical constituents and Phytopharmacological profile of Hedyotis corymbosa. Keywords: Hedyotis Corymbosa, Phytopharmacological profile, Phytochemical review, Rubiaceae. INTRODUCTION dichotomous, slender ascending herb growing up to 50 lants represent the eternal kindness to nature by all cm. The leaves are 1.3 – 2 cm by 0.8 -3 mm, the lower means which is really expressed in varied human leaves are often broader than upper ones, linear, acute, Pculture from time immemorable. Man’s interest in glabrous, usually with recurved margins. Flowers are plants began for his requirement of food and shelter. -
6630 Decision Rpt.Pdf
Clearing Permit Decision Report 1. Application details 1.1. Permit application details Permit application No.: 6630/1 Permit type: Purpose Permit 1.2. Proponent details Proponent’s name: MacPhersons Resources Ltd 1.3. Property details Property: Mining Lease 25/355 Mining Lease 26/490 Miscellaneous Licence 25/35 Miscellaneous Licence 25/36 Local Government Area: City of Kalgoorlie-Boulder Colloquial name: Boorara Prospect 1.4. Application Clearing Area (ha) No. Trees Method of Clearing For the purpose of: 70 Mechanical Removal Mining Infrastructure 1.5. Decision on application Decision on Permit Application: Grant Decision Date: 13 August 2015 2. Site Information 2.1. Existing environment and information 2.1.1. Description of the native vegetation under application Vegetation Description Beard vegetation associations have been mapped for the whole of Western Australia and are useful to look at vegetation in a regional context. Two Beard vegetation associations have been mapped within the application area (Government of Western Australia, 2014; GIS Database): - 468: Medium woodland; salmon gum & goldfields blackbutt - 1241: Succulent steppe; bluebush. Two flora and vegetation assessments have been undertaken over the Boorara Prospect project area by Mattiske Consulting Pty Ltd (Mattiske), which includes the application area (Mattiske, 2012; Mattiske 2014). The flora and vegetation assessments recorded a total of 19 broad vegetation community types across the two survey areas, which are: Eucalypt Woodlands E1: Very Open Woodland of Eucalyptus ravida, Eucalyptus stricklandii, Eucalyptus transcontinentalis and Eucalyptus salmonophloia over mixed Eremophila species over Atriplex nummularia and mixed shrubs on flats with red/brown clay soils and scattered quartz pebbles. E2: Dense Low Forest of Eucalyptus ravida and Eucalyptus celastroides over Eremophila interstans subsp. -
Mini-Grafting of Adult Passiflora Edulis Sims F. Flavicarpa Deg. Scions Onto Vegetatively Propagated Adult Rootstocks of P
AJCS 10(4):490-496 (2016) ISSN:1835-2707 DOI: 10.21475/ajcs.2016.10.04.p7156x Mini-grafting of adult Passiflora edulis Sims f. flavicarpa Deg. scions onto vegetatively propagated adult rootstocks of P. mucronata Lam. Layane Segantini Oliari1, João Antonio Dutra Giles1, Lívia Giro Mayrinck1, João Paulo Bestete de Oliveira4, José Carlos Lopes3, Wagner Campos Otoni5, Edilson Romais Schmildt1, Elisa Mitsuko Aoyama1, Rodrigo Sobreira Alexandre*2 1Federal University of Espírito Santo (UFES), Department of Agricultural and Biological Sciences, Brazil 2Federal University of Espírito Santo, Department of Forest and Wood Sciences, Brazil 3Federal University of Espírito Santo, Department of Plant Production, Brazil 4Federal Institute of Espírito Santo, Campus Ibatiba, Brazil 5Federal University of Viçosa (UFV), Department of Plant Biology, University Campus, 36570-000 Viçosa, MG, Brazil *Corresponding author: [email protected] Abstract The mini-grafting is a nondestructive vegetative propagation method based on grafting apical segments onto adult donor plants- derived rootstocks. Here, we aimed at evaluating the mini-grafting of shoot tips derived from adult Passiflora edulis f. flavicarpa plants (yellow passion fruit) onto vegetatively propagated rootstocks of P. mucronata (sandbank passion fruit). Different shoot tip lengths and the fastening material were assayed. A randomized block experimental design was set up following a 2 × 3 factorial scheme [shoots: 8-12 and 3-7 cm × fastening materials (circular clip, “V” shaped clip, and Parafilm®)] totaling six treatments with four repetitions of eight plants each. The following characteristics were evaluated: graft setting (%); graft and rootstock diameters (mm); graft diameter/rootstock diameter ratio; cellular division in the graft region and starch presence in the graft and rootstock. -
Hedyotis (PDF)
Fl. China 19: 147–174. 2011. 35. HEDYOTIS Linnaeus, Sp. Pl. 1: 101. 1753, nom. cons. 耳草属 er cao shu Chen Tao (陈涛); Charlotte M. Taylor Diplophragma (Wight & Arnott) Meisner; Exallage Bremekamp; Gonotheca Blume ex Candolle (1830), not Rafinesque (1818); Hedyotis sect. Diplophragma Wight & Arnott; Metabolos Blume; Oldenlandia Linnaeus; Thecagonum Babu. Herbs, subshrubs, or shrubs, annual or perennial, procumbent to erect or climbing, unarmed. Raphides present. Leaves opposite [or rarely whorled], sometimes clustered at ends of stems, without domatia; secondary venation rarely triplinerved or palmate; stip- ules persistent, interpetiolar, fused to petiole bases, or united around stem, triangular to truncate, entire or ciliate to laciniate, erose, 1- to several lobed and/or -setose. Inflorescences terminal, pseudoaxillary, and/or axillary, few to many flowered and fasciculate, cy- mose, paniculate, capitate, or glomerulate or reduced to 1 flower, sessile or pedunculate, bracteate or bracts reduced. Flowers pedicellate or sessile, bisexual and monomorphic or distylous [to unisexual on dioecious plants]. Calyx limb shallowly to deeply (2–)4-lobed (or 5-lobed, Hedyotis hainanensis). Corolla white, pink, purple, or blue, tubular, funnelform, salverform, rotate, or urceolate, variously glabrous or pubescent inside; lobes (2–)4(or 5, H. hainanensis), valvate in bud. Stamens 4(or 5, H. hainanensis), inserted in corolla tube or throat, included or exserted; filaments developed to reduced; anthers dorsifixed often near base. Ovary 2- celled, ovules -
Redalyc.Germinação in Vitro De Passiflora Gibertii N. E. Brown Com
Semina: Ciências Agrárias ISSN: 1676-546X [email protected] Universidade Estadual de Londrina Brasil Alves de Figueiredo Carvalho, Milene; Paiva, Renato; Peixoto Vargas, Daiane; Padovani Porto, Jorge Marcelo; Cravo Herrera, Raírys; Stein, Vanessa Cristina Germinação in vitro de Passiflora gibertii N. E. Brown com escarificação mecânica e ácido giberélico Semina: Ciências Agrárias, vol. 33, núm. 3, mayo-junio, 2012, pp. 1027-1032 Universidade Estadual de Londrina Londrina, Brasil Disponível em: http://www.redalyc.org/articulo.oa?id=445744113030 Como citar este artigo Número completo Sistema de Informação Científica Mais artigos Rede de Revistas Científicas da América Latina, Caribe , Espanha e Portugal Home da revista no Redalyc Projeto acadêmico sem fins lucrativos desenvolvido no âmbito da iniciativa Acesso Aberto DOI: 10.5433/1679-0359.2012v33n3p1027 Germinação in vitro de Passiflora gibertii N. E. Brown com escarificação mecânica e ácido giberélico In vitro germination of Passiflora gibertii N. E. Brown with mechanical scarification and gibberellic acid Milene Alves de Figueiredo Carvalho1*; Renato Paiva2; Daiane Peixoto Vargas3; Jorge Marcelo Padovani Porto4; Raírys Cravo Herrera5; Vanessa Cristina Stein6 Resumo No presente trabalho, objetivou-se analisar alguns aspectos da germinação in vitro de sementes de maracujazeiro Passiflora gibertii N. E. Brown, quanto ao tipo de escarificação, o efeito do uso do regulador de crescimento GA3 e utilização de sementes frescas ou secas. Para tanto, sementes de frutos maduros foram lavadas em água corrente e, posteriormente, colocadas para secar por quatro dias (sementes secas). Após esse período, novas sementes foram isoladas dos frutos e lavadas em água corrente para serem utilizadas imediatamente (sementes frescas). Foram avaliados diferentes tipos de escarificação (retirada da extremidade da semente com o auxílio de pinça e bisturi, retirada da extremidade da semente com lixa, manualmente, e o tratamento controle – ausência de escarificação). -
Germination and Interspecific Grafting of Passion Fruit
DOI: 10.14295/CS.v9i3.2244 Comunicata Scientiae 9(3): 531-534, 2018 Scientific Note e-ISSN: 2177-5133 www.comunicatascientiae.com Germination and interspecific grafting of passion fruit Roseano Medeiros da Silva1*, Ana Verônica Menezes de Aguiar1, Kaio Gráculo Vieira Garcia2, Fábio Gelape Faleiro3, Vander Mendonça1, Eudes de Almeida Cardoso1 1Federal University of the Semi-Arid, Mossoró, Brazil 2Federal University of Ceará, Fortaleza, Brazil 3Brazilian Agricultural Research Corporation, Planaltina, Brazil *Corresponding author, e-mail: [email protected] Abstract The objective of this study is to evaluate the seed germination and efficiency of grafting yellow passion fruit on six Passifloraceae species. The species used as rootstocks were Passiflora foetida L., P. cincinnata Mast., P. ligularis Juss., P. caerulea L., P. gibertii N. E. Brown, and P. edulis Sims. The study involved six treatments with four replicates of eight plants per plot and was arranged in a completely randomized block design. The seedlings were produced on a non-sterile substrate composed of a mixture of soil and bovine manure at the ratio of 3:1. The percentage of germination was high for all studied species, and the rate of graft development and survival was higher than 70 and 85.71%, respectively, within 60 days after grafting. Keywords: Passiflora edulis Sims., species, propagation Passionflower belongs to the Passifloracea On a commercial scale, passion fruit family and grows in tropical climates. Brazil is is usually propagated by sexual reproduction. the world’s largest producer and consumer of However, this type of reproduction causes serious passion fruit (Passiflora edulis Sims.), with a total problems in field conditions because of the average production of 823,000 tons and yield susceptibility of the crop to diseases caused by soil of approximately 14.3 t ha-1 in 2014 (ABF, 2016). -
Pollen Flora of Pakistan–Liv. Rubiaceae
Pak. J. Bot., 39(4): 999-1015, 2007. POLLEN FLORA OF PAKISTAN–LIV. RUBIACEAE ANJUM PERVEEN AND MUHAMMAD QAISER Department of Botany, University of Karachi, Karachi - 75270, Pakistan Abstract Pollen morphology of 50 species representing 20 genera of the family Rubiaceae from Pakistan has been examined by light and scanning electron microscope. Pollen grains usually radially symmetrical, isopolar, mostly prolate-spheroidal to sub-prolate, often oblate-spheroidal - sub-oblate rarely prolate. Aperture colpate to pantocolpate, or 3-10-colporate, sexine thicker or thinner than nexine. Tectal surface mostly spinulose or scabrate–punctate, reticulate or rugulate - reticulate often psilate. On the basis of apertural types and exine ornamentation, 9 distinct pollen types are recognized viz., Argostemma sarmentosum-type, Aitchisonia rosea–type Galium elegans -type, Galium tenuissimum-type, Gaillonia macrantha-type, Jaubertia aucheri-type, Oldenlandia nudicaulis–type, Oldenlandia umbellata–type and Pseudogaillonia hymenostenphana-type Introduction Rubiaceae is a large family of c. 450 genera, approximately 6500 species, largely of tropical and subtropical in distribution but some in temperate regions and few arctic in distribution (Mebberley, 1987). It is represented in Pakistan by 33 genera and c. 87 species (Nazimuddin & Qaiser, 1989). Cronquist (1968) placed the family Rubiaceae in the subclass Asteridae within the order Rubiales. He considered Rubiales to be related to the Gentianales and Dipsacales (especially Caprifoliaceae). Chase et al., (1993) also placed Rubiaceae among the families of Gentianales but not near to Dipsacales. Thorne (1968) and Takhtajan (1969) also treated this family under the order Rubiales. The family is characterized by opposite and interpetiolar stipules or with whorled leaves without interpetiolar stipules, The corolla is regular, with isomerous stamens attached to the corolla tube and inferior ovary having two or more locules with axil placentation.